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Problem & Our Approach



We wish to learn a dynamical system from data (trajectories) in a form that can:

predict future states

e explain complex dynamics via recurring patterns
p p y gp

e interpret spacial and temporal relations of the states

be used to control the dynamical process
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An Easy Example: Noisy Linear Dynamics

State space X = R¢, F € R¥? and X3,y = FX; +w;, wg i.i.d. N(0,0%1,)

e Eigenvalue decomposition (not an SVD!): (A, us,v;) € C x C* x C¢,

Fv;, = >\i'Ui7 u;‘F = )\iuf and ufvj = 6ij — F = Z )\wiuf
i€[d]

e Expected dynamics: E[X; | Xo = 2] = F'z = Z A (ufm) v
i€[d]
A different perspective via measurements/observables :

o Fi={fuw:="{w):R'=R|lweR} = E[fu(Xit1)|X:=2x] = (z, F*w) = frew(z)

e Expected dynamics of observables :
fzu eEF — E[.f%(xl‘) ‘XO :I] = <337 (F*)tw> = Z )"f <fw>f1"i>—7: flh (x)
ic[d]

e Even when F is not linear, the mapping f— E[f(X¢+1) | Xt = ] is linear!
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Koopman Operator Framework

o Let {X;: teN} be a time-homogeneous Markov chain,

P{X;y1€B|Xi=2}= p(z, B) , (z,B)eXxZx, teN
—_———

transition kernel
o If F C R¥ is a vector space of observables its Koopman operator Ar: F — F is

(A f](z) = /X p(e,dy) () = E[f(Xep)| Xe =], feF ceX

e We can use spectral theory: if 3(us, gi, fi) € CxFxF, i €N, s.t.
Arfi=wifi, Argi=pigi, (fi,g;) =065, ,j EN

then the Koopman Mode Decomposition of f € span{ fi, fo,...}:

[A%fl(x) = E[f(X¢) | Xo = 2] = Z“z (f, @) fi(x), zeX,teN



Koopman Mode Decomposition (KMD)

A51)0) =B (X0) | Xo = o] = 34t (. 0A(o), € XN

a) Diagnostics

past future

e Time oscillations A\! with amplitudes
tArg(X;)t ie
)

|\i|* and frequencies e

2w At

E

= sorureudp dwiry,

: 1
b) Future state prediction

m Jf(x.)=(A‘.‘/.f)<x‘,>

° Terms 1/} ( ) dependlng only on the (Picture from [Kutz et al. 2016])
initial condition

e Static modes (f,&;) of observable f




Our Approach

Let's use the kernel trick - replace (z,y) with k(z,y) = (¢(x), o(y))!
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Some interesting applications



Molecular D

Eigenfunction 1

Eigenfunction 2

State 1

State 2

TR

YRR

W

(Picture from [Meanti et al. 2023])




Epidemiology

(a) Ra}v Data (c) Mode Selection (d) Discrete
st Eigenvalue
s o Spectrum
f 0.3
. renl ‘&
E - W s A\ |
q) l-?ﬂ[]-i 2[](]&‘5- 2006 2007 2008 2009 2010 2011 2012 2013 2014 : FI'EQIJE}I‘ICV (1.’yr (A
++ (b} Data Snapshots in Time Normalized imag
8) - . P — — () Dynamic Mode
O States ,i 3 E [ 1
i b -
(O] 5 i i
Health Rl ) § 5| Phase
. ; B Fok (year)
i ;B B O3 3E
o K 3 . s
Cities :; ! ) % 1 (‘ 0

2004 2005 2006 200? 2008 2009 2010 2011 2012 2013 2014

(Picture from [Kutz et al. 2016])

Koopman modes give insights into spatio-temporal correlations
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Neuroscience
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Statistical Learning Framework
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Ap: F—=F,  (Arf)(z)= /){P(%dy)f(y) = E[f(Xe41) Xy = 2]

e What is an appropriate 7?7 Assuming invariant distribution 7:

m(B) = / m(dz) p(x,B), V Be€ Xy
—_———
* joint distribution p

we can choose F = L2(X), and denote A, = A2 (x). In general |[A;| =1 and
A, f = f, for m-a.e. constant function f!
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e How to learn A, from data when not even a domain is available?
e k: X x X — R be a positive definite kernel such that &(-,-) < co 7-a.e.
e H the associated reproducing kernel Hilbert spaces (RKHS) is then H C L2(X)

e with feature map ¢(z) := k(x, ) we form subspaces from data (x;); by > cigp(x;)

o we use the reproducing property h(x) = (¢(z), h),,, also known as a "kernel trick” 13



Statistical Learning Framework

e Let’s start with a notion of risk of a potential estimator G: ‘H — H:

R(G) = E[Z (hi(Xet1) — (Ghi)(xt))ﬂ ie.

€N

the cumulative expected one-step-ahead prediction error over an o.n. basis (h;);cn of H.
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e Let’s start with a notion of risk of a potential estimator G: H — H:

R(G) =E| Y (hi(Xer1) = (Gh)(X0)?] ie.

€N

the cumulative expected one-step-ahead prediction error over an o.n. basis (h;);cn of H.

e Kernel trick: Embed data and aim to learn G: H — H s.t.

G*$(X) ~E[p(Xi1) | Xe = X], X~ |2
9p<X)

e The risk has equivalent form R(G) := E(x y),[[¢(Y) — G*¢(X)|?

e and we have the bias-variance decomposition

Ex,y)~pll0(Y) = G*O(X)IP = Exorllgp(X) = G (X +E(x,v)mpllgp(X) — ¢(V)]?

R(G) excess risk irreducible risk Rg
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Statistical Learning Framework

e Let’s start with a notion of risk of a potential estimator G: H — H:

R(G) =E| Y (hi(Xer1) = (Gh)(X0)?] ie.

€N

the cumulative expected one-step-ahead prediction error over an o.n. basis (h;);cn of H.

e Kernel trick: Embed data and aim to learn G: H — H s.t.

G*o(X) = E[p(Xt41) | X = X],

9p(X)

X~

(/)

e The risk has equivalent form R(G) := E(x y),|¢(Y) — G*o(X)||?

e and we have the bias-variance decomposition

Exy)mpll9(Y) = G*o(X)I? = Exnrllgp(X) = G*0(X)II? +E(x,v)mpllgp(X) — ¢(Y)]?

R(G)

excess risk

irreducible risk Rg

e g, is known as the conditional mean embedding (CME) of transition kernel p into 7{!
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Statistical Learning Framework

e Since k(-,+) € L2(X) then H C L2(X), so LX)

the injection operator S is Hilbert-Schmidt iSh
TS
e The restriction of the Koopman operator to H _J

A = A, S, is then Hilbert-Schmidt, too!

|3
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S/T
-’

15



Statistical Learning Framework

e Since k(-,+) € L2(X) then H C L2(X), so LX)
the injection operator S is Hilbert-Schmidt a S,
-’
e The restriction of the Koopman operator to H
Anjy = AxSy is then Hilbert-Schmidt, too! l ———
A
G 4
e We should solve the inverse problem S,.G = A,S; 'L’%(gf) {h
e But, since the risk can be decomposed as a 5 _’
R(G) = || ArSe — 5:Glfis + 15w s — 1A= Sy ks )

E45(G) Ro

15



Statistical Learning Framework

e Since k(-,+) € L2(X) then H C L2(X), so LX)

the injection operator S is Hilbert-Schmidt a S,

'

e The restriction of the Koopman operator to H

Anjy = AxSy is then Hilbert-Schmidt, too! l ———

A
G y/3

e We should solve the inverse problem S,.G = A,S; 'L’%(gf) {h
e But, since the risk can be decomposed as a 5 _’

R(G) = ||A7rS7r - SWG”%{S + ”Sfr”%{s - HAﬂSﬂT”%{S ;———J

E45(G) Ro

the problem of learning A, by SxG is equivalent to learning g, by G*¢(-)!

Duality with CME is via reproducing property [Ay |, h](z) = (h, gp(2)),,
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e Since k(-,+) € L2(X) then H C L2(X), so LX)

the injection operator S is Hilbert-Schmidt a S,

'

e The restriction of the Koopman operator to H

Anjy = AxSy is then Hilbert-Schmidt, too! l ———

A
G y/3

e We should solve the inverse problem S,.G = A,S; 'L’%(gf) {h
e But, since the risk can be decomposed as a 5 _’

R(G) = ||A7rS7r - SWG”%{S + ”Sfr”%{s - HAﬂSﬂT”%{S ;———J

E45(G) Ro

the problem of learning A, by S;G is equivalent to learning g, by G*&(-)!

Duality with CME is via reproducing property [Ay |, h|(z) = (h, g,(2)),,

e How well can we learn A, via H?
15



Statistical Learning Framework

e Proposition: If Py, is orthogonal projector onto W
cl(Im(Sy)) in L2(X), then for every § > 0 there g
exists a finite rank non-defective operator GG such ~ L
that |4, Sy — S+Gll2s < IIT — Pl ArSallis + 0. a @

G l Ag
TR

O—1
&
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Statistical Learning Framework

e Proposition: If Py is orthogonal projector onto sz(&n) )
cl(Im(Sy)) in L2(X), then for every § > 0 there g !
exists a finite rank non-defective operator GG such ~ L
that ||A; Sy — S:Gll%4g < [T — Py)AxSx|lZg + 6.
HS HS >
e Remark: Im(A,S,) C cl(Im(S,)) holds for Gl )
7 that is dense in L2(X) (i.e. for universal k 4
that is d (1) ( ) CGER
which implies that Py = I. S
a : -’
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e Proposition: If Py is orthogonal projector onto sz(&n) )
cl(Im(Sy)) in L2(X), then for every § > 0 there g .
exists a finite rank non-defective operator GG such ~ L
that || A-Sy — SxGll3s < |II — PulAxSkl3s + 0.
HS HS >
e Remark: Im(A,S,) C cl(Im(S,)) holds for Gl )
7 that is dense in L2(X) (i.e. for universal k 4
that s d (1) ( ) CGER
which implies that Py = 1. S
e Two cases arise depending on whether a - '>
inf gens() £(G) is attained or not:

(i) well-specified case, there exists 7-a.e. Koopman operator G := CTT € HS (H),
where C :=Ex~z¢(X) ® ¢(X) and T := E(x y)~,0(X) @ #(Y), i.e.
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Statistical Learning Framework

e Proposition: If Py is orthogonal projector onto sz(&n) )
cl(Im(Sy)) in L2(X), then for every § > 0 there g
exists a finite rank non-defective operator GG such a i -)
that [|A;Sr — SxGll3s < I — Pu]ArSx|lig + 6. /)

e Remark: Im(A,S,) C cl(Im(S,)) holds for Gl )
7 that is dense in L2(X) (i.e. for universal k 4

that s d (1) ( ) CGER

which implies that Py = 1. S

e Two cases arise depending on whether a - '>
inf gens() £(G) is attained or not:

(i) well-specified case, there exists m-a.e. Koopman operator Gy := CTT € HS (H),
where C :=Ex~z¢(X) ® ¢(X) and T := E(x y)~,0(X) @ #(Y), i.e.

ArSr =5;Gy <= Guf=E[f(X¢41)| X =] m-a.e. forevery f € H.
(ii) misspecified case, H does not admit a HS 7-a.e. Koopman operator H — H
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Empirical Estimators
and Statistical Bounds




Empirical Estimators of A,

e We either observe an i.i.d. D = (z;,y;)", from p, or from a trajectory ..., ;, Tit1,...
Yi
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Empirical Estimators of A,

e We either observe an i.i.d. D = (z;,y;)", from p, or from a trajectory ..., ;, Tit1,...
——

Yi

e The Koopman Operator Regression is then: Given the data D solve min R(G)
GEHS(H)
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Empirical Estimators of A,

e We either observe an i.i.d. D = (z;,y;)", from p, or from a trajectory ..., ;, Tit1,...
——

Yi

e The Koopman Operator Regression is then: Given the data D solve min R(G)
GEHS(H)

e Different estimators arise by minimizing over a set of operators the empirical risk
-~ 1 = * 2
R(G) == n Z||¢(yi) — G ()%
i=1
or, equivalently,

R(G) = 1Z - SGlls
using the sampling operators §, Z € HS (H,R™) of inputs and outputs

a _1 n = _1 n
Sf= (n 2f(xi))i:l’ Zf= (n Qf(yi»i:l
that lead to covariance and cross-covariance operators
5 Ses ~ o~ o~ 1
C=5*8== p B dT =57 == ) )
n Z $(@i) @ ¢z:) an n ' ' 17

1€[n] 1€[n]



Estimators via ERM

The estimators have the form G = §*W2, W e Rmxn

_min  R(G) +7|Gllxs
GEeHS(H)

e Kernel Ridge Regression (KRR) G, := C;'T :
W = K;l, with K = (k(x;,2;)) K, =K+~l,and C, :=C+~I

n
i,j=1r
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Estimators via ERM

The estimators have the form G = §*W2, W e Rmxn

_min_R(G) +7[Cllis
GEeHS(H)
rank(G)<r

e Kernel Ridge Regression (KRR) G, := C;'T

W = K, with K = (k(z;, z;)) K, =K +~I, and C, := C +~I

n
i,j=1r

e Principal Component Regression (PCR, aka Kernel-DMD) Gfﬁ?R = [C,]LT:
W = [K,]i, where [],- denotes r-truncated SVD

o Reduced Rank Regression (RRR) GRER .= ¢ '/* [0 /1],
W = Z;Zl u; @ (Ku;) where u; are the r leading eigenvectors of LKu; = J?Kwu,-,
normalized as u; KK, u; =1, and L = (k(Yi> y5))7 j=1
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Estimators via ERM

The estimators have the form G = §*W2, W e Rmxn

_min_R(G) +7[Cllis
GEeHS(H)
rank(G)<r

e Kernel Ridge Regression (KRR) G, := C;'T

W = K, with K = (k(z;, z;)) K, =K +~I, and C, := C +~I

n
i,j=1r

e Principal Component Regression (PCR, aka Kernel-DMD) G?E{JR = [C,]LT:
W = [K,]}, where [-], denotes r-truncated SVD

o Reduced Rank Regression (RRR) GRER .= /2 [0 /1],
W = 2221 u; @ (Ku;) where u; are the r leading eigenvectors of LK u; = JiQK,Yui,
normalized as u; KK u; =1, and L = (k(yi, y;))f =1

Theorem: Let W= 22:1 u; ® v;, then the modal decomposition of G can be computed by
solving an eigenvalue problem (vauj);'J:l € R™", where M=(k(xi,y;)); ;=1

18



Learning KMD

Let G € HS (H) be rank r and non-defective, then
G=> XN$i®&, Gii=Xt, G&=XN&, (¥i,&)y =0, 0,5 €lr],
=1

and the mode decomposition of G is: (G'h)(z) = i Ai(h, &)y 00i(x), h € H, t €N
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and the mode decomposition of G is: (G'h)(z) = i Ai(h, &)y 00i(x), h € H, t €N
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(i) Forecasting can get increasingly harder for larger ¢:
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operator norm error
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Learning KMD

Let G € HS (H) be rank r and non-defective, then
G=> XN$i®&, Gii=Xt, G&=XN&, (¥i,&)y =0, 0,5 €lr],
i=1

and the mode decomposition of G is: (G'h)(z) = i Ai(h, &)y 00i(x), h € H, t €N

Theorem
(i) Forecasting can get increasingly harder for larger ¢:
IB[A(X)|Xo = ] = $xGhllzz < [ AxSx — S<GI(SIZHIGHN) I
—_——

operator norm error

(i) The pseudo eigen-pair (\;, Sz1;) error may be looser than the operator norm error:

C1y— 1Az — XiT)Srhs]] [l ]|
I(Ar = XD 77t < < ||AxSy — S:G||
” 1] [AxSn = 5:Gl 15
E(G N——
n(2pi)
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Learning KMD

Let G € HS (H) be rank r and non-defective, then
G=> XN$i®&, Gii=Xt, G&=XN&, (¥i,&)y =0, 0,5 €lr],
i=1

and the mode decomposition of G is: (G'h)(z) = i Ai(h, &)y 00i(x), h € H, t €N

Theorem
(i) Forecasting can get increasingly harder for larger ¢:
IB[A(X)|Xo = ] = $xGhllzz < [ AxSx — S<GI(SIZHIGHN) I
—_——

operator norm error

(i) The pseudo eigen-pair (\;, Sz1;) error may be looser than the operator norm error:

- |(Ar — XD)Sras]| [l |
| Aw - /\iI) ! ! < < ”AWSW - STrG
It | B0 [4-5x = 5-Clyg ]
———
n(vi)

To get grantees for KMD one needs to control operator norm error and metric distortion! 5



Key players: operator norm error and metric distortion

e Metric distortion: Let G € HS, (7). Then for all i € [r]

|)\ \cond( i) A HGH
Sx G)

—== < 1t <
1C

mm (

where cond(}\;) := H£7H||Z/}z||/|<’(/}“§l> | is the condition number of \;

20



Key players: operator norm error and metric distortion

e Metric distortion: Let G € HS, (). Then for all i € [r]

|)\ \cond( i) A HG||

< n(gy) < 5.0)

ViIeT ~

mm (

where cond(}\;) 1= ||§,H||z/;l||/|<1/)“§z>7{\ is the condition number of \;

e Operator norm error: to analyze it we use the following decomposition

E(G) < |l = Pu)AxSall + | PrAnSe — SxGy | + 1S(Gy — G| + 1S-(G = G)|,

kernel selection bias regularization bias rank reduction bias  estimator's variance

where G, := C;'T = arg minGeHE(H) R(G) + 7||G|l}s, and G being is the population

version of the empirical estimator G.

20



Assumptions for deriving the learning bounds

(BC) Boundedness of the kernel. There exists ¢z, > 0 such that esssup||é(z)* < cx

ey
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Assumptions for deriving the learning bounds

(BC) Boundedness of the kernel. There exists c3 >0 such that esssup||é(z)||* < cx

ey

(SD) Spectral Decay of the kernel operator. There exists 5 € (0, 1] and a constant b >0 such
that \;(C) <bj~'/8, forall j € J.
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that \;(C) <bj~'/8, forall j € J.

(RC) Regularity of A,. For some a € (0,2] there exists a > 0 such that TT* < a?C'*<.

e (RC) is weaker than the existing source condition (SRC) used for CME analysis that relies
on the interpolation spaces, i.e. Im(A,S;) C Im(S, C(@~1/2)
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Assumptions for deriving the learning bounds

(BC) Boundedness of the kernel. There exists c3 >0 such that esssup||é(z)||* < cx

ey

(SD) Spectral Decay of the kernel operator. There exists 5 € (0,1] and a constant b >0 such
that \;(C) <bj~'/8, forall j € J.

(RC) Regularity of A,. For some a € (0,2] there exists a > 0 such that TT* < a?C'*<.

e (RC) is weaker than the existing source condition (SRC) used for CME analysis that relies
on the interpolation spaces, i.e. Im(A,S;) C Im(S, C(@~1/2)

e For example, with Gaussian RKHS (/5 — 0), (SRC) does not hold for any a € (0, 2], while
if A% = A, assumption (RC) holds true for at least o = 1.
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Error Learning Bounds

Theorem (Operator norm error)

Let A, be an operator such that 0, (A Sx) > 0,+1(AxSy) > 0 for some r € N. Let (SD) and
(RC) hold for some 3 € (0,1] and a € [1,2], respectively, and let cl(Im(S,)) = LZ(X). Given
5 €(0,1) let

__1 o
=X n~o+F and g :=n" 2@,

Then, there exists a constant ¢ >0, such that for large enough n > r and every i € [r], with
probability at least 1 —§ in the i.i.d. draw of (x;,y;)}_, from p

E(GRRR) < 011 (AnSy)+eeh gt
and, assuming that 0,.(Sx) > 0r41(Sx),

E(Gpor) < 0r41(Sx) + cel gL,
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Error Learning Bounds

Theorem (Operator norm error)

Let A, be an operator such that 0, (A Sx) > 0,+1(AxSy) > 0 for some r € N. Let (SD) and
(RC) hold for some 3 € (0,1] and a € [1,2], respectively, and let cl(Im(S,)) = LZ(X). Given
5 €(0,1) let

__1 ___a
=X n~o+F and g :=n" 2@,

Then, there exists a constant ¢ >0, such that for large enough n > r and every i € [r], with
probability at least 1 —§ in the i.i.d. draw of (x;,y;)}_, from p

£(Grrr) < Or41(AgSy)+cel Ins?
and, assuming that 0,.(Sx) > 0r41(Sx),
E(Gpor) < 0r41(Sx) + cel gL,
Moreover, the rate matches the minimax lower bound for the operator norm error when

learning finite rank A,, > 2,

E(G) > coler. "



Koopman spectra for time-reversal invariant processes

Example (Langevin Dynamics)

Let X = R? and let 3>0. The (overdamped) Langevin equation driven by a potential
U :R? — R is given by
dX; = —=VU(Xy)dt + /28~ 1dWs,

where W, is a Wiener process. The invariant measure of this process is the Boltzman
distribution m(dx) o e PU) dz, and the associated Koopman operator is self-adjoint.
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Koopman spectra for time-reversal invariant processes

Example (Langevin Dynamics)

Let X = R? and let 3>0. The (overdamped) Langevin equation driven by a potential
U :R? — R is given by
dX; = —VU(Xy)dt + /26~ 1dWy,

where W, is a Wiener process. The invariant measure of this process is the Boltzman
distribution m(dx) o e PU) dz, and the associated Koopman operator is self-adjoint.

e Koopman operator for time-reversal invariant processes is self-adjoint, i.e. A% = A,.

e If additionally we assume compactness of A, (e.g. if p(z,-) < =, for all z € X), then
Aﬂ' - ZieNu’i fl X fi7

where (pi, fi)ien € R x L2(X) are Koopman eigenpairs, i.e. A, f; = u; fi. Moreover,
lim; oo t; = 0 and {fi}ien form a complete orthonormal system of L2 (X).

28]



Estimation of Koopman spectra in self-adjoint case

~

o Let ( 1/11)1 , be its eigen-pairs a rank r estimator G € HS (H) of Az, i.e. Gibi =i ;.
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Estimation of Koopman spectra in self-adjoint case

o Let (\; %) _, be its eigen-pairs a rank r estimator G € HS (H) of A, i.e. Gib; = \; ;.

e To compare wi with the corresponding true Koopman eigenfunction f;, using S, , we
inject t; in L2(X) to define the normalized estimated eigenfunction

Fi = Sxti [ |Snthill, i € [1].
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Estimation of Koopman spectra in self-adjoint case

o Let (\; %) _, be its eigen-pairs a rank r estimator G € HS (H) of A, i.e. Gib; = \; ;.

e To compare wi with the corresponding true Koopman eigenfunction f;, using S, , we
inject t; in L2(X) to define the normalized estimated eigenfunction

Fi = Sxthi / |Swtbill, i € [r].

e Using the classical Davis-Kahan spectral perturbation result we get
X = gl < QT = An)H| ™! < E(G) n(¥i), and
21\ —
[8ap; (Ax) — [Ai — pall+

Ifi = £il® <

where gap; (Ax)=min;; |p;—p;]-
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Estimation of Koopman spectra in self-adjoint case

Let (A %) _, be its eigen-pairs a rank r estimator G € HS (H) of A, i.e. Gib; = \; ;.

To compare wi with the corresponding true Koopman eigenfunction f;, using S, , we
inject t; in L2(X) to define the normalized estimated eigenfunction

Fi = Sxthi / |Swtbill, i € [r].

e Using the classical Davis-Kahan spectral perturbation result we get
s = sl < NI = An) 717 < E(G) (), and
2/\ — il
[gap; (Ax) — [Ai — pall+

Ifi = £il® <

where gap; (Ax)=min;;|p;—p;l.

Spuriousness of spectra can arise purely from the learning problem, i.e.

"well learned” operator (small error) but "badly learned” spectra (eigenvalues far apart)
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Spectral Learning Bounds

Theorem (Spectral bounds for self-adjoint Koopman)

Let A, be a compact self-adjoint operator. Under the assumptions of the previous Theorem,
there exists a constant ¢ > 0, depending only on H, such that for every § € (0,1), for every
large enough m > r and every i € [r] with probability at least 1 — § in the i.i.d. draw of

(x4, ;)" from p

~ % +ceflné! if G= @55&
X — iy | <
3 7 (%) 20v41(Sx) +cerln 51 if é — (PCR
[UT(A”S")_U$+1<SW)]+ n 7,7y

Moreover,

i — Kiy| < sl(CA}’) + +cer Ind~L, where the empirical bias is given by
. Mior 1 (C7V2T), G = @EE}R’
AiyJorna(@),  G=GRSR.
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Experiments




Example: Choice of the kernel

Good kernel Bad kernel Ugly kernel

T
1| T \A
.. ,\/M/}v* /1 ‘“({ h

|
675 674 67‘5 672 671 60 75 74 7& 60 675 674 67‘3 672 671 6()

Reduced Rank (RRR)

PCR vs. RRR in estimating slow dynamics of 1D Ornstein—Uhlenbeck process
Xt = 6_1Xt,1 + 1—e2 €t,

where {€;};>1 are independent standard Gaussians.

We use three different kernels over 50 independent trials. Vertical lines correspond to Koopman
eigenvalues. The good kernel is such that its H corresponds to the leading eigenspace of the
Koopman operator, while the other two use permuted eigenfunctions to distort the metric and

introduce slow (bad kernel) and fast (ugly kernel) spectral decay of the covariance.
26



Example: Noisy Logistic Map

Let F(z) := 42(1 — x) over X = [0, 1] and consider the discrete dynamical system
Ty = (F(z) +&) mod 1,

where & are i.i.d. with law Q(d¢) o< cos™ (w€)d€, N even

Noise distribution € Invariant distribution 7 Eigenfunction for A,
6 3
2 -

— N=20 — Real part
4 o i T Noiseless i 47 Imag. part
2 -
0 T 0 T
—0.5 0.0 0.5 0.0 0.5 1.0

For this system we are able to evaluate the spectral decomposition of A: rank(A,;)=N+1
and the eigenvalues decay fast: A\j=1, Ay 3=—0.193 £ 0.191¢, and |\4 5| ~ 0.027.
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Example: Noisy Logistic Map

Experimental setting: 10* training points, 500 test points, 100 repetitions
p g gp

Estimator ‘ Training error Test error
PCR 0.2 + 0.003 0.18 £ 0.00051
RRR 0.13 £ 0.002 0.13 4 0.00032
KRR | 0.032 £ 0.00057 0.13 4 0.00068
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Example: Noisy Logistic Map

Experimental setting: 10 training points, 500 test points, 100 repetitions

Estimator ‘ Training error Test error
PCR 0.2 + 0.003 0.18 £ 0.00051
RRR 0.13 £ 0.002 0.13 4 0.00032

KRR | 0.032 4+ 0.00057 0.13 4 0.00068

Training vs. Test errors Excess risk
e Empirically we verify bounds! 0525 ] 10-2 4
—e— PCR Train error

0.500 4 — = PCR Test error <~

RRR Train error —e— PCR
O3 RRR Test error 10-3 4 RRR
0.450 === n /2 decay

10° 10* 103 10*
Traning samples n Training samples n
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Example: Noisy Logistic Map

Experimental setting: 10 training points, 500 test points, 100 repetitions

Estimator ‘ Training error Test error A1 = A1l/ ] [A2.3 — A2.3]/| X3
PCR 0.2 £ 0.003 0.18 £ 0.00051 9.6-107°+7.2-107° 0.85 %+ 0.03
RRR 0.13 4 0.002 0.13 4 0.00032 5.1-10"%+3.8.10"° 0.16 £ 0.1
KRR | 0.032 4+ 0.00057 0.13 +0.00068 7.9-10"7 +5.7-10""7 0.48 +0.17

Estimated eigenvalues over 100 different independent datasets

° Emp|r|ca||y we Verify bou nds! = KRR-estimated eigenvalues
. === RRR-estimated eigenvalues
029 — PCR-estimated eigem‘alueh" *_ .
i * True eigenvalues .
e )\; =1 (corresponding to the aad
equilibrium mode) is well
approximated by all estimators 007 A T
~0.14 :
e RRR always outperforms PCR *
. . —0.24 ;
and it best estimates the :
non-trivial eigenvalues A3 3 ; ‘ ; ‘ ‘
—-0.5 —04 -0.3 —0.2 —-0.1 0.0 0.1
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Example: Koopman Operator & Molecular Dynamics

Simulation of the molecule Alanine dipeptide

from the Computational Molecular Biology %
Group, Freie Universitat Berlin:

Dihedral angles - Density plot Evolution of the angle ¢

e dynamics governed by the Langevin .
equation is Markovian :

e exists an invariant measure called s 0 & .
Boltzmann distribution '

e equations are time-reversal-invariant, so :
A = Ax T RS S S T A
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Example: Koopman Operator & Molecular Dynamics

Simulation of the molecule Alanine dipeptide
from the Computational Molecular Biology
Group, Freie Universitat Berlin:

e dynamics governed by the Langevin
equation is Markovian
e exists an invariant measure called

Boltzmann distribution

e equations are time-reversal-invariant, so
Ay = A

Dihedral angles - Density plot

Evolution of the angle

/2 0 /2 0 50 100 150 200
Time (ns)

The estimated evals A\; = 0.9992, Ay = 0.9177, A3 = 0.4731, \y = —0.0042 and A5 = —0.0252.

Eigenfunction of A4

Eigenfunction of Ay

Eigenfunction of A3

BPE /2

> 0 : %‘: ‘ = 04
3

—n/2 4 —m/24

T

il 5 29



Example: Koopman Operator & Molecular Dynamics

e In this example we show that minimizing the empirical spectral bias over a validation
dataset, is also a good criterion for Koopman model selection.
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e In this example we show that minimizing the empirical spectral bias over a validation
dataset, is also a good criterion for Koopman model selection.

e We trained 19 RRR estimators each corresponding to a different kernel and then we
evaluated the forecasting RMSE over 5000 validation points from 2000 initial conditions
drawn from a test dataset.

30



Example: Koopman Operator & Molecular Dynamics

e In this example we show that minimizing the empirical spectral bias over a validation
dataset, is also a good criterion for Koopman model selection.

e We trained 19 RRR estimators each corresponding to a different kernel and then we
evaluated the forecasting RMSE over 5000 validation points from 2000 initial conditions
drawn from a test dataset.

Model selection for Alanine Dipeptide

—— Best estimator

e Forecasting RMSE shows how the
best model according to the

RMSE

empirical spectral bias metric also
attains the best forecasting

performances by a large margin.

1 2 3 4 5

Forecast horizon [ns]
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Example: Koopman Operator with “Deep” Kernels

e In computer vision, kernels defined from neural-network feature maps outperform classical
ones

31



Example: Koopman Operator with “Deep” Kernels

e In computer vision, kernels defined from neural-network feature maps outperform classical

ones

e We compare Linear, Gaussian and Convolutional Neural Network (CNN) kernels, the

latter being
b (2,2") = (Puw (), Puw ("))

where ¢,, is the last layer of a pretrained CNN classifier. Training data size = 1000

Seed =1

01236566866
- EOOOOE

Conv2d(1,16;5) — ReLU — MaxPool(2) — Conv2d(16,32;5) — ReLU — MaxPool(2) — Dense(1568, 10)
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Deep Learning of a good RKHS




Deep Projection Networks

e What is a good RKHS?
dominant Koopman efuns captured, no kernel selection bias and no metric distorsion

PyAnPy ~ Ax, |l = Pu]AzSe|~~0 and  n(y) =9/ IIC*p]| ~ 1
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Deep Projection Networks

e What is a good RKHS?
dominant Koopman efuns captured, no kernel selection bias and no metric distorsion

PyAnPy~ A, ||l — Pou]AzSc| ~>0 and () = ||| / [|C*/29[| ~ 1
e The idea is to parameterize two feature vectors one for input and one for the output:

$u () = [Du1(2), .., bue(x)] € R and ¢ur () := [$ur,1(y), - -, Sure(y)] € R

and then, using covariance operators

C)% - Ed’w(X) Y QbW(X)-/ C)lgqﬁi// = E¢111(X) ® QSUJ’(Y) and Cﬁqﬁl = E¢1z/'/ (Y> ® ¢1u’ (Y),
maximize the regularized score

max AW (0w — 1 + 10y - T1s)
wi [ORIICY
———

<N1Pr., Ax P, I3

reducing the metric distortion
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Challenges & open problems




Thank You!
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Trajectory data

e With notion of beta mixing coefficients:

Bx (1) = sup |pg114-) (B) — pgay X pyay (B)]
BeX®X

we prove that for B € X1

H[1:m] (B> - H“r{ni} (B)‘ < (m - 1) Bx (1)' and derive
e Lemma 1 Let X be strictly stationary with values in a normed space (X, ||-||), and

assume n = 2mr for 7,m € N. Moreover, let Z;,..., Z,, be m independent copies of
Z1 =Y., X; Thenfors>0

p{HiXi > s) §2P{H§:Zj
i=1 j=1

e We generalize Prop. 2 as

Proposition 3: Let § > (m — 1)8x (7 — 1). With probability at least 1 — ¢ in the draw
Xy ~T,x ~ p(io1,-), @ € [2m],

. 48 dmT 2|C| dmt
_ < = '
1T T|m1n(5—(m—l)5x(7'—1)+12\/ m 1115—(m—1)5X(7'—1)

>;}—|—2(m—1)ﬂx(7).
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