

1

Koopman Operator Regression: Statistical Learning Perspective to Data-driven Dynamical System

Vladimir Kostic

November 23, 2023

CSML, Italian Institute of Technology, Genoa, Italy Dept. of Mathematics and Informatics, University of Novi Sad, Serbia

Papers:

- VK, P. Novelli, A. Maurer, C. Ciliberto, L. Rosasco, & M. Pontil. Learning dynamical systems via Koopman operator regression in RKHS. *NeurIPS 2022*
- VK, K. Lounici, P. Novelli & M. Pontil. Koopman Operator Learning: Sharp Spectral Rates and Spurious Eigenvalues *NeurIPS 2023*
- G. Meanti, A. Chatalic, VK, P. Novelli, M. Pontil & L. Rosasco. Estimating Koopman operators with sketching to provably learn large scale dynamical systems *NeurIPS 2023*
- VK, P. Novelli, R. Grazzi, K. Lounici & M. Pontil. Deep projection networks for learning time-homogeneous dynamical systems 2023

Plan

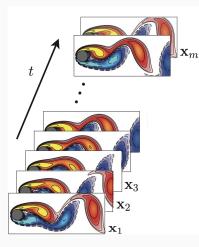
- Problem and Koopman operator approach
- Statistical learning formulation
- Numerical experiments

- Some Applications
- ERM and learning bounds
- Open problems

Problem & Our Approach

Problem

We wish to learn a dynamical system from data (trajectories) in a form that can:



- predict future states
- explain complex dynamics via recurring patterns
- interpret spacial and temporal relations of the states
- be used to control the dynamical process

• ...

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$F \boldsymbol{v_i} = \lambda_i \boldsymbol{v_i}, \ \boldsymbol{u_i^*} F = \lambda_i \boldsymbol{u_i^*} \text{ and } \ \boldsymbol{u_i^*} v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i u_i^*$$

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$F \boldsymbol{v_i} = \lambda_i \boldsymbol{v_i}, \ \boldsymbol{u_i^*} F = \lambda_i \boldsymbol{u_i^*} \text{ and } \ \boldsymbol{u_i^*} v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i \boldsymbol{u_i^*}$$

• Expected dynamics: $\mathbb{E}[X_t \mid X_0 = x] = F^t x = \sum_{i \in [d]} \lambda_i^t (u_i^* x) v_i$

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$F v_i = \lambda_i v_i, \ u_i^* F = \lambda_i u_i^* \text{ and } u_i^* v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i u_i^*$$

• Expected dynamics: $\mathbb{E}[X_t \mid X_0 = x] = F^t x = \sum_{i \in [d]} \lambda_i^t (u_i^* x) v_i$

A different perspective via measurements/observables :

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$Fv_i = \lambda_i v_i, \ u_i^*F = \lambda_i u_i^*$$
 and $u_i^*v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i u_i^*$

• Expected dynamics: $\mathbb{E}[X_t \mid X_0 = x] = F^t x = \sum_{i \in [d]} \lambda_i^t (u_i^* x) v_i$

A different perspective via measurements/observables :

• $\mathcal{F} := \{ f_w := \langle \cdot, w \rangle \colon \mathbb{R}^d \to \mathbb{R} \mid w \in \mathbb{R}^d \} \implies \mathbb{E}[f_w(X_{t+1}) \mid X_t = x] = \langle x, F^*w \rangle = f_{F^*w}(x)$

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$Fv_i = \lambda_i v_i, \ u_i^*F = \lambda_i u_i^*$$
 and $u_i^*v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i u_i^*$

• Expected dynamics: $\mathbb{E}[X_t \mid X_0 = x] = F^t x = \sum_{i \in [d]} \lambda_i^t (u_i^* x) v_i$

A different perspective via measurements/observables :

- $\mathcal{F} := \{ f_w := \langle \cdot, w \rangle \colon \mathbb{R}^d \to \mathbb{R} \mid w \in \mathbb{R}^d \} \implies \mathbb{E}[f_w(X_{t+1}) \mid X_t = x] = \langle x, F^*w \rangle = f_{F^*w}(x)$
- Expected dynamics of observables :

$$f_w \in \mathcal{F} \implies \mathbb{E}[f_w(X_t) | X_0 = x] = \langle x, (F^*)^t w \rangle = \sum_{i \in [d]} \lambda_i^t \langle f_w, f_{v_i} \rangle_{\mathcal{F}} f_{u_i}(x)$$

State space $\mathcal{X} = \mathbb{R}^d$, $F \in \mathbb{R}^{d \times d}$ and $X_{t+1} = FX_t + \omega_t$, ω_t i.i.d. $\mathcal{N}(0, \sigma^2 I_d)$

• Eigenvalue decomposition (not an SVD!): $(\lambda_i, u_i, v_i) \in \mathbb{C} \times \mathbb{C}^d \times \mathbb{C}^d$,

$$Fv_i = \lambda_i v_i, \ u_i^*F = \lambda_i u_i^*$$
 and $u_i^*v_j = \delta_{ij} \implies F = \sum_{i \in [d]} \lambda_i v_i u_i^*$

• Expected dynamics: $\mathbb{E}[X_t \mid X_0 = x] = F^t x = \sum_{i \in [d]} \lambda_i^t (u_i^* x) v_i$

A different perspective via measurements/observables :

- $\mathcal{F} := \{ f_w := \langle \cdot, w \rangle \colon \mathbb{R}^d \to \mathbb{R} \mid w \in \mathbb{R}^d \} \implies \mathbb{E}[f_w(X_{t+1}) \mid X_t = x] = \langle x, F^*w \rangle = f_{F^*w}(x)$
- Expected dynamics of observables :

$$f_w \in \mathcal{F} \implies \mathbb{E}[f_w(X_t) | X_0 = x] = \langle x, (F^*)^t w \rangle = \sum_{i \in [d]} \lambda_i^t \langle f_w, f_{v_i} \rangle_{\mathcal{F}} f_{u_i}(x)$$

• Even when F is not linear, the mapping $f \mapsto \mathbb{E}[f(X_{t+1}) | X_t = x]$ is linear!

Koopman Operator Framework

• Let $\{X_t \colon t \in \mathbb{N}\}$ be a time-homogeneous Markov chain,

$$\mathbb{P}\left\{X_{t+1} \in B \mid X_t = x\right\} = \underbrace{p(x, B)}_{\text{transition kernel}} , \quad (x, B) \in \mathcal{X} \times \Sigma_{\mathcal{X}}, \ t \in \mathbb{N}$$

Koopman Operator Framework

• Let $\{X_t\colon t{\in}\mathbb{N}\}$ be a time-homogeneous Markov chain,

$$\mathbb{P}\left\{X_{t+1} \in B \mid X_t = x\right\} = \underbrace{p(x, B)}_{\text{transition kernel}}, \quad (x, B) \in \mathcal{X} \times \Sigma_{\mathcal{X}}, \ t \in \mathbb{N}$$

• If $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ is a vector space of observables its Koopman operator $A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}$ is

$$[\mathbf{A}_{\mathcal{F}}f](x) := \int_{\mathcal{X}} p(x, dy) f(y) = \mathbb{E}\left[f(X_{t+1}) | X_t = x\right], \quad f \in \mathcal{F}, \ x \in \mathcal{X}$$

Koopman Operator Framework

• Let $\{X_t : t \in \mathbb{N}\}$ be a time-homogeneous Markov chain,

$$\mathbb{P}\left\{X_{t+1} \in B \mid X_t = x\right\} = \underbrace{p(x, B)}_{\text{transition kernel}}, \quad (x, B) \in \mathcal{X} \times \Sigma_{\mathcal{X}}, \ t \in \mathbb{N}$$

- If $\mathcal{F} \subset \mathbb{R}^{\mathcal{X}}$ is a vector space of observables its Koopman operator $A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}$ is $[A_{\mathcal{F}}f](x) := \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right], \quad f \in \mathcal{F}, \, x \in \mathcal{X}$
- We can use spectral theory: if $\exists (\mu_i, g_i, f_i) \in \mathbb{C} \times \mathcal{F} \times \mathcal{F}$, $i \in \mathbb{N}$, s.t.

$$A_{\mathcal{F}}f_i = \mu_i f_i, \quad A_{\mathcal{F}}^*g_i = \bar{\mu}_i g_i, \quad \langle f_i, \bar{g}_j \rangle = \delta_{ij}, \quad i, j \in \mathbb{N}$$

then the Koopman Mode Decomposition of $f \in \text{span}\{f_1, f_2, ...\}$:

$$[A_{\mathcal{F}}^t f](x) = \mathbb{E}[f(X_t) \,|\, X_0 = x] = \sum_i \mu_i^t \,\langle f, \bar{g}_i \rangle \,f_i(x), \quad x \in \mathcal{X}, \, t \in \mathbb{N}$$

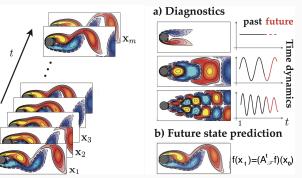
Koopman Mode Decomposition (KMD)

$$[A_{\mathcal{F}}^t f](x) = \mathbb{E}[f(X_t) \mid X_0 = x] = \sum_i \mu_i^t \langle f, \bar{g}_i \rangle f_i(x), \quad x \in \mathcal{X}, t \in \mathbb{N}$$

• Time oscillations λ_i^t with amplitudes $|\lambda_i|^t$ and frequencies $e^{i\operatorname{Arg}(\lambda_i)t}$, *i.e.*

 $\frac{\Im(\ln\lambda_i)}{2\pi\Delta t}$

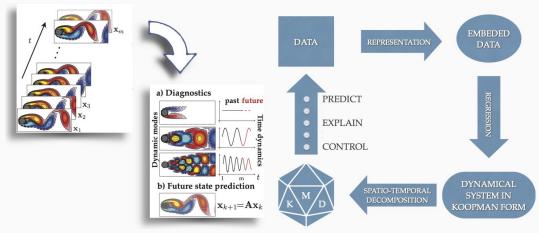
- Static modes $\langle f, \bar{\xi_i} \rangle$ of observable f
- Terms $\psi_i(x)$ depending only on the initial condition



(Picture from [Kutz et al. 2016])

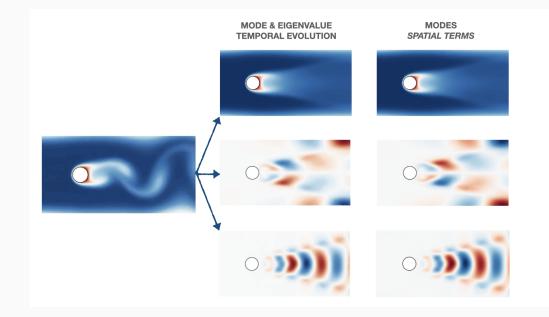
Our Approach

Let's use the **kernel trick** - replace $\langle x, y \rangle$ with $k(x, y) = \langle \phi(x), \phi(y) \rangle$!



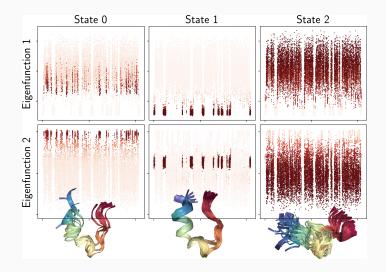
⁽Picture from [Kutz et al. 2016])

KOR GitHub page kooplearn SciKit Learn compliant & KeOps implementations

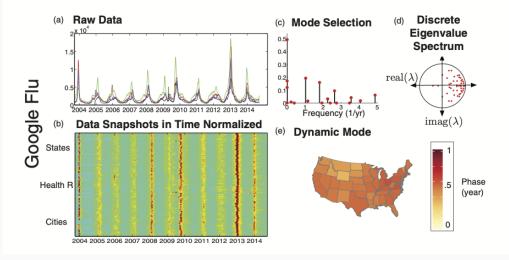


Some interesting applications

Molecular Dynamics



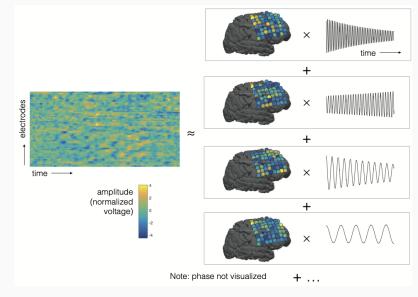
(Picture from [Meanti et al. 2023])



(Picture from [Kutz et al. 2016])

Koopman modes give insights into spatio-temporal correlations

Neuroscience



(Picture from [Kutz et al. 2016])

Related Work (list by far incomplete!)

Data-driven algorithms to reconstruct dynamical systems:

- Williams, Rowley, Kevrekidis (2015). A kernel-based method for data-driven Koopman spectral analysis. *J. of Computational Dynamics*
- Kutz, Brunton, Brunton, Proctor (2016). Dynamic Mode Decomposition. SIAM.
- Klus, Schuster and Muandet (2019) Eigendecompositions of transfer operators in reproducing kernel Hilbert spaces. *Journal of Nonlinear Science*

Koopman operator theory:

- Brunton, Budišić, Kaiser, Kutz (2022). Modern Koopman Theory for Dynamical Systems. SIAM Review
- Budišić, Mohr, Mezić (2012). Applied Koopmanism. Chaos: An Interdisciplinary J. of Nonlinear Science
- Das and Giannakis (2020). Koopman spectra in reproducing kernel Hilbert spaces. Applied and Computational Harmonic Analysis

Statistical learning / link to CME (see below):

- Grünewälder et al. (2012). Conditional mean embeddings as regressors. ICML
- Muandet, Fukumizu, Sriperumbudur and Schölkopf (2017). Kernel Mean Embedding of Distributions: A Review and Beyond. *Foundations and Trends in Machine Learning*
- Li, Meunier, Mollenhauer and Gretton (2022). Optimal rates for regularized conditional mean embedding learning. *NeurIPS*

$$A_{\mathcal{F}}: \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy) f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ?

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

Our example: If $F = F^*$ and ||F|| < 1, then $\pi \equiv \mathcal{N}(0, C)$ for $C = \sigma^2 (I - F^2)^{-1}$

• How to learn A_{π} from data when not even a domain is available?

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

- How to learn A_{π} from data when not even a domain is available?
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel such that $k(\cdot, \cdot) < \infty \pi$ -a.e.

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

- How to learn A_{π} from data when not even a domain is available?
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel such that $k(\cdot, \cdot) < \infty \pi$ -a.e.
 - \mathcal{H} the associated reproducing kernel Hilbert spaces (RKHS) is then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

- How to learn A_{π} from data when not even a domain is available?
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel such that $k(\cdot, \cdot) < \infty \pi$ -a.e.
 - \mathcal{H} the associated reproducing kernel Hilbert spaces (RKHS) is then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$
 - with feature map $\phi(x) := k(x, \cdot)$ we form subspaces from data $(x_i)_i$ by $\sum c_i \phi(x_i)$

$$A_{\mathcal{F}} \colon \mathcal{F} \to \mathcal{F}, \qquad (A_{\mathcal{F}}f)(x) = \int_{\mathcal{X}} p(x, dy)f(y) = \mathbb{E}\left[f(X_{t+1})|X_t = x\right]$$

• What is an appropriate \mathcal{F} ? Assuming invariant distribution π :

$$\pi(B) = \int_{\mathcal{X}} \underbrace{\pi(dx) \ p(x, B)}_{\text{joint distribution } \rho}, \quad \forall \ B \in \Sigma_{\mathcal{X}}$$

we can choose $\mathcal{F} = L^2_{\pi}(\mathcal{X})$, and denote $A_{\pi} \equiv A_{L^2_{\pi}(\mathcal{X})}$. In general $||A_{\pi}|| = 1$ and $A_{\pi}f = f$, for π -a.e. constant function f!

- How to learn A_{π} from data when not even a domain is available?
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel such that $k(\cdot, \cdot) < \infty \pi$ -a.e.
 - \mathcal{H} the associated reproducing kernel Hilbert spaces (RKHS) is then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$
 - with feature map $\phi(x) := k(x, \cdot)$ we form subspaces from data $(x_i)_i$ by $\sum_i c_i \phi(x_i)$
 - we use the reproducing property $h(x) = \langle \phi(x), h \rangle_{\mathcal{H}}$, also known as a "kernel trick"

• Let's start with a notion of risk of a potential estimator $G \colon \mathcal{H} \to \mathcal{H}$:

$$\mathcal{R}(G) = \mathbb{E}\Big[\sum_{i \in \mathbb{N}} \left(h_i(X_{t+1}) - (Gh_i)(X_t)\right)^2\Big] \quad \text{i.e.}$$

the cumulative expected one-step-ahead prediction error over an o.n. basis $(h_i)_{i \in \mathbb{N}}$ of \mathcal{H} .

• Let's start with a notion of risk of a potential estimator $G \colon \mathcal{H} \to \mathcal{H}$:

$$\mathcal{R}(G) = \mathbb{E}\Big[\sum_{i \in \mathbb{N}} (h_i(X_{t+1}) - (Gh_i)(X_t))^2\Big]$$
 i.e.

the cumulative expected one-step-ahead prediction error over an o.n. basis $(h_i)_{i \in \mathbb{N}}$ of \mathcal{H} .

• Kernel trick: Embed data and aim to learn $G \colon \mathcal{H} \to \mathcal{H}$ s.t.

 $G^*\phi(X) \approx \phi(Y), \quad (X,Y) \sim \rho$

• Let's start with a notion of risk of a potential estimator $G \colon \mathcal{H} \to \mathcal{H}$:

$$\mathcal{R}(G) = \mathbb{E}\Big[\sum_{i \in \mathbb{N}} (h_i(X_{t+1}) - (Gh_i)(X_t))^2\Big]$$
 i.e.

the cumulative expected one-step-ahead prediction error over an o.n. basis $(h_i)_{i\in\mathbb{N}}$ of \mathcal{H} .

• Kernel trick: Embed data and aim to learn $G \colon \mathcal{H} \to \mathcal{H}$ s.t.

 $G^*\phi(X) \approx \phi(Y), \quad (X,Y) \sim \rho$

• The risk has equivalent form $\mathcal{R}(G) := \mathbb{E}_{(X,Y)\sim \rho} \|\phi(Y) - G^*\phi(X)\|^2$

• Let's start with a notion of risk of a potential estimator $G \colon \mathcal{H} \to \mathcal{H}$:

$$\mathcal{R}(G) = \mathbb{E}\Big[\sum_{i \in \mathbb{N}} (h_i(X_{t+1}) - (Gh_i)(X_t))^2\Big]$$
 i.e.

the cumulative expected one-step-ahead prediction error over an o.n. basis $(h_i)_{i\in\mathbb{N}}$ of \mathcal{H} .

• Kernel trick: Embed data and aim to learn $G \colon \mathcal{H} \to \mathcal{H}$ s.t.

$$G^*\phi(X) \approx \underbrace{\mathbb{E}[\phi(X_{t+1}) \mid X_t = X]}_{g_p(X)}, \quad X \sim \pi$$

$$\begin{array}{c} \mathcal{X} & \xrightarrow{\phi} & \mathcal{H} \\ \end{array}$$

- The risk has equivalent form $\mathcal{R}(G):=\mathbb{E}_{(X,Y)\sim\rho}\|\phi(Y)-G^*\phi(X)\|^2$
- and we have the **bias-variance** decomposition

$$\underbrace{\mathbb{E}_{(X,Y)\sim\rho}\|\phi(Y) - G^*\phi(X)\|^2}_{\mathcal{R}(G)} = \underbrace{\mathbb{E}_{X\sim\pi}\|g_p(X) - G^*\phi(X)\|^2}_{\text{excess risk}} + \underbrace{\mathbb{E}_{(X,Y)\sim\rho}\|g_p(X) - \phi(Y)\|^2}_{\text{irreducible risk } \mathcal{R}_0}$$

• Let's start with a notion of risk of a potential estimator $G \colon \mathcal{H} \to \mathcal{H}$:

$$\mathcal{R}(G) = \mathbb{E}\Big[\sum_{i \in \mathbb{N}} (h_i(X_{t+1}) - (Gh_i)(X_t))^2\Big]$$
 i.e.

the cumulative expected one-step-ahead prediction error over an o.n. basis $(h_i)_{i\in\mathbb{N}}$ of \mathcal{H} .

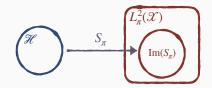
• Kernel trick: Embed data and aim to learn $G \colon \mathcal{H} \to \mathcal{H}$ s.t.

- The risk has equivalent form $\mathcal{R}(G):=\mathbb{E}_{(X,Y)\sim\rho}\|\phi(Y)-G^*\phi(X)\|^2$
- and we have the **bias-variance** decomposition

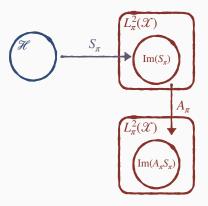
$$\underbrace{\mathbb{E}_{(X,Y)\sim\rho}\|\phi(Y) - G^*\phi(X)\|^2}_{\mathcal{R}(G)} = \underbrace{\mathbb{E}_{X\sim\pi}\|g_p(X) - G^*\phi(X)\|^2}_{\text{excess risk}} + \underbrace{\mathbb{E}_{(X,Y)\sim\rho}\|g_p(X) - \phi(Y)\|^2}_{\text{irreducible risk } \mathcal{R}_0}$$

• g_p is known as the conditional mean embedding (CME) of transition kernel p into $\mathcal{H}!$

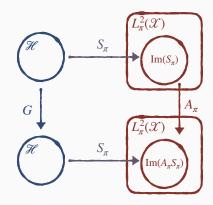
• Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt



- Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt
- The restriction of the Koopman operator to \mathcal{H} $A_{\pi|_{\mathcal{H}}} \equiv A_{\pi}S_{\pi}$ is then Hilbert-Schmidt, too!

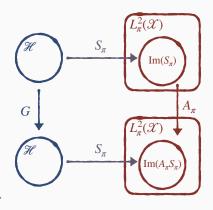


- Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt
- The restriction of the Koopman operator to \mathcal{H} $A_{\pi|_{\mathcal{H}}} \equiv A_{\pi}S_{\pi}$ is then Hilbert-Schmidt, too!
- We should solve the inverse problem $S_{\pi}G = A_{\pi}S_{\pi}$



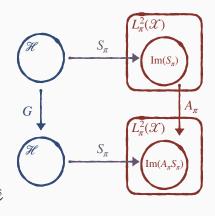
- Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt
- The restriction of the Koopman operator to \mathcal{H} $A_{\pi|_{\mathcal{H}}} \equiv A_{\pi}S_{\pi}$ is then Hilbert-Schmidt, too!
- We should solve the inverse problem $S_{\pi}G = A_{\pi}S_{\pi}$
- But, since the risk can be decomposed as

$$\mathcal{R}(G) = \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|_{\mathrm{HS}}^{2}}_{\mathcal{E}^{2}_{\mathrm{HS}}(G)} + \underbrace{\|S_{\pi}\|_{\mathrm{HS}}^{2} - \|A_{\pi}S_{\pi}\|_{\mathrm{HS}}^{2}}_{\mathcal{R}_{0}}$$



- Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt
- The restriction of the Koopman operator to \mathcal{H} $A_{\pi|_{\mathcal{H}}} \equiv A_{\pi}S_{\pi}$ is then Hilbert-Schmidt, too!
- We should solve the inverse problem $S_{\pi}G = A_{\pi}S_{\pi}$
- But, since the risk can be decomposed as

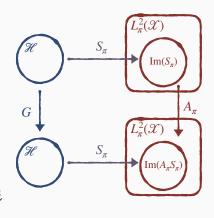
$$\mathcal{R}(G) = \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|_{\mathrm{HS}}^{2}}_{\mathcal{E}^{2}_{\mathrm{HS}}(G)} + \underbrace{\|S_{\pi}\|_{\mathrm{HS}}^{2} - \|A_{\pi}S_{\pi}\|_{\mathrm{HS}}^{2}}_{\mathcal{R}_{0}}$$



the problem of learning $A_{\pi|_{\mathcal{H}}}$ by $S_{\pi}G$ is equivalent to learning g_p by $G^*\phi(\cdot)!$ Duality with CME is via reproducing property $[A_{\pi|_{\mathcal{H}}}h](x) = \langle h, g_p(x) \rangle_{\mathcal{H}}$

- Since $k(\cdot, \cdot) \in L^2_{\pi}(\mathcal{X})$ then $\mathcal{H} \subseteq L^2_{\pi}(\mathcal{X})$, so the injection operator S_{π} is Hilbert-Schmidt
- The restriction of the Koopman operator to \mathcal{H} $A_{\pi|_{\mathcal{H}}} \equiv A_{\pi}S_{\pi}$ is then Hilbert-Schmidt, too!
- We should solve the inverse problem $S_{\pi}G = A_{\pi}S_{\pi}$
- But, since the risk can be decomposed as

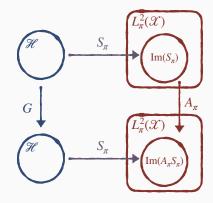
$$\mathcal{R}(G) = \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|_{\mathrm{HS}}^{2}}_{\mathcal{E}^{2}_{\mathrm{HS}}(G)} + \underbrace{\|S_{\pi}\|_{\mathrm{HS}}^{2} - \|A_{\pi}S_{\pi}\|_{\mathrm{HS}}^{2}}_{\mathcal{R}_{0}}$$



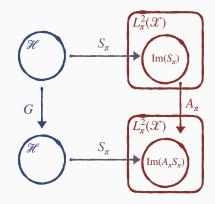
the problem of learning $A_{\pi|_{\mathcal{H}}}$ by $S_{\pi}G$ is equivalent to learning g_p by $G^*\phi(\cdot)!$ Duality with CME is via reproducing property $[A_{\pi|_{\mathcal{H}}}h](x) = \langle h, g_p(x) \rangle_{\mathcal{H}}$

• How well can we learn A_{π} via \mathcal{H} ?

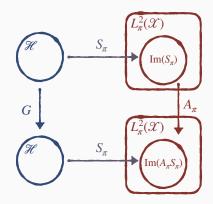
• **Proposition:** If $P_{\mathcal{H}}$ is orthogonal projector onto $\operatorname{cl}(\operatorname{Im}(S_{\pi}))$ in $L^{2}_{\pi}(\mathcal{X})$, then for every $\delta > 0$ there exists a finite rank non-defective operator G such that $\|A_{\pi}S_{\pi} - S_{\pi}G\|^{2}_{\mathrm{HS}} \leq \|[I - P_{\mathcal{H}}]A_{\pi}S_{\pi}\|^{2}_{\mathrm{HS}} + \delta$.



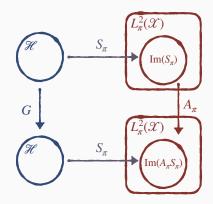
- **Proposition:** If $P_{\mathcal{H}}$ is orthogonal projector onto $\operatorname{cl}(\operatorname{Im}(S_{\pi}))$ in $L^{2}_{\pi}(\mathcal{X})$, then for every $\delta > 0$ there exists a finite rank non-defective operator G such that $||A_{\pi}S_{\pi} S_{\pi}G||^{2}_{\operatorname{HS}} \leq ||[I P_{\mathcal{H}}]A_{\pi}S_{\pi}||^{2}_{\operatorname{HS}} + \delta$.
- Remark: Im(A_πS_π) ⊆ cl(Im(S_π)) holds for *H* that is dense in L²_π(X) (i.e. for *universal k*) which implies that P_H = I.



- **Proposition:** If $P_{\mathcal{H}}$ is orthogonal projector onto $\operatorname{cl}(\operatorname{Im}(S_{\pi}))$ in $L^{2}_{\pi}(\mathcal{X})$, then for every $\delta > 0$ there exists a finite rank non-defective operator G such that $||A_{\pi}S_{\pi} S_{\pi}G||^{2}_{\operatorname{HS}} \leq ||[I P_{\mathcal{H}}]A_{\pi}S_{\pi}||^{2}_{\operatorname{HS}} + \delta$.
- **Remark:** $\operatorname{Im}(A_{\pi}S_{\pi}) \subseteq \operatorname{cl}(\operatorname{Im}(S_{\pi}))$ holds for \mathcal{H} that is dense in $L^{2}_{\pi}(\mathcal{X})$ (i.e. for *universal* k) which implies that $P_{\mathcal{H}} = I$.
- Two cases arise depending on whether $\inf_{G \in \mathrm{HS}(\mathcal{H})} \mathcal{E}(G)$ is attained or not:



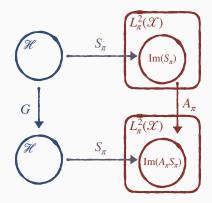
- **Proposition:** If $P_{\mathcal{H}}$ is orthogonal projector onto $\operatorname{cl}(\operatorname{Im}(S_{\pi}))$ in $L^{2}_{\pi}(\mathcal{X})$, then for every $\delta > 0$ there exists a finite rank non-defective operator G such that $||A_{\pi}S_{\pi} S_{\pi}G||^{2}_{\operatorname{HS}} \leq ||[I P_{\mathcal{H}}]A_{\pi}S_{\pi}||^{2}_{\operatorname{HS}} + \delta$.
- Remark: Im(A_πS_π) ⊆ cl(Im(S_π)) holds for *H* that is dense in L²_π(X) (i.e. for *universal k*) which implies that P_H = I.
- Two cases arise depending on whether $\inf_{G \in \mathrm{HS}(\mathcal{H})} \mathcal{E}(G)$ is attained or not:



(i) well-specified case, there exists π -a.e. Koopman operator $G_{\mathcal{H}} := C^{\dagger}T \in \mathrm{HS}(\mathcal{H})$, where $C := \mathbb{E}_{X \sim \pi} \phi(X) \otimes \phi(X)$ and $T := \mathbb{E}_{(X,Y) \sim \rho} \phi(X) \otimes \phi(Y)$, i.e.

 $A_{\pi}S_{\pi} = S_{\pi}G_{\mathcal{H}} \quad \Longleftrightarrow \quad G_{\mathcal{H}}f = \mathbb{E}[f(X_{t+1}) \,|\, X_t = \cdot] \quad \pi\text{-a.e. for every } f \in \mathcal{H}.$

- **Proposition:** If $P_{\mathcal{H}}$ is orthogonal projector onto $\operatorname{cl}(\operatorname{Im}(S_{\pi}))$ in $L^{2}_{\pi}(\mathcal{X})$, then for every $\delta > 0$ there exists a finite rank non-defective operator G such that $||A_{\pi}S_{\pi} S_{\pi}G||^{2}_{\operatorname{HS}} \leq ||[I P_{\mathcal{H}}]A_{\pi}S_{\pi}||^{2}_{\operatorname{HS}} + \delta$.
- Remark: Im(A_πS_π) ⊆ cl(Im(S_π)) holds for *H* that is dense in L²_π(X) (i.e. for *universal k*) which implies that P_H = I.
- Two cases arise depending on whether $\inf_{G \in \mathrm{HS}(\mathcal{H})} \mathcal{E}(G)$ is attained or not:



(i) well-specified case, there exists π -a.e. Koopman operator $G_{\mathcal{H}} := C^{\dagger}T \in \mathrm{HS}(\mathcal{H})$, where $C := \mathbb{E}_{X \sim \pi} \phi(X) \otimes \phi(X)$ and $T := \mathbb{E}_{(X,Y) \sim \rho} \phi(X) \otimes \phi(Y)$, i.e.

 $A_{\pi}S_{\pi} = S_{\pi}G_{\mathcal{H}} \quad \Longleftrightarrow \quad G_{\mathcal{H}}f = \mathbb{E}[f(X_{t+1}) \,|\, X_t = \cdot] \quad \pi\text{-a.e. for every } f \in \mathcal{H}.$

(ii) misspecified case, \mathcal{H} does not admit a HS π -a.e. Koopman operator $\mathcal{H} \to \mathcal{H}$

Empirical Estimators and Statistical Bounds

Empirical Estimators of A_{π}

• We either observe an i.i.d. $\mathcal{D} = (x_i, y_i)_{i=1}^n$ from ρ , or from a trajectory ..., $x_i, \underbrace{x_{i+1}}_{i=1}, \ldots$

 u_i

Empirical Estimators of A_{π}

- We either observe an i.i.d. $\mathcal{D} = (x_i, y_i)_{i=1}^n$ from ρ , or from a trajectory ..., $x_i, \underbrace{x_{i+1}}, \ldots$
- The Koopman Operator Regression is then: Given the data $\mathcal D$ solve $\min_{G\in \mathrm{HS}(\mathcal H)}\mathcal R(G)$

 y_i

Empirical Estimators of A_{π}

- We either observe an i.i.d. $\mathcal{D} = (x_i, y_i)_{i=1}^n$ from ρ , or from a trajectory ..., $x_i, \underbrace{x_{i+1}}_{i=1}, \ldots$
- The Koopman Operator Regression is then: Given the data $\mathcal D$ solve $\min_{G\in \mathrm{HS}(\mathcal H)}\mathcal R(G)$
- Different estimators arise by minimizing over a set of operators the empirical risk

$$\widehat{\mathcal{R}}(G) := \frac{1}{n} \sum_{i=1}^{n} \|\phi(y_i) - G^*\phi(x_i)\|_{\mathcal{H}}^2$$

or, equivalently,

$$\widehat{\mathcal{R}}(G) \equiv \|\widehat{Z} - \widehat{S}G\|_{\mathrm{HS}}^2$$

using the sampling operators $\widehat{S}, \widehat{Z} \in \mathrm{HS}\left(\mathcal{H}, \mathbb{R}^n\right)$ of inputs and outputs

$$\widehat{S}f = \left(n^{-\frac{1}{2}}f(x_i)\right)_{i=1}^n, \qquad \widehat{Z}f = \left(n^{-\frac{1}{2}}f(y_i)\right)_{i=1}^n$$

that lead to covariance and cross-covariance operators

$$\widehat{C} = \widehat{S}^* \widehat{S} = \frac{1}{n} \sum_{i \in [n]} \phi(x_i) \otimes \phi(x_i) \quad \text{ and } \widehat{T} = \widehat{S}^* \widehat{Z} = \frac{1}{n} \sum_{i \in [n]} \phi(x_i) \otimes \phi(y_i)$$

17

The estimators have the form $\ \widehat{G} = \widehat{S}^* W \widehat{Z}, \quad W \in \mathbb{R}^{n \times n}$

 $\min_{\widehat{G} \in \mathrm{HS}(\mathcal{H})} \, \widehat{\mathcal{R}}(\widehat{G}) + \gamma \| \widehat{G} \|_{\mathrm{HS}}^2$

• Kernel Ridge Regression (KRR) $G_{\gamma} := C_{\gamma}^{-1}T$: $W = K_{\gamma}^{-1}$, with $K = (k(x_i, x_j))_{i,j=1}^n$, $K_{\gamma} = K + \gamma I_n$ and $C_{\gamma} := C + \gamma I$

The estimators have the form $\ \widehat{G} = \widehat{S}^* W \widehat{Z}, \quad W \in \mathbb{R}^{n \times n}$

 $\min_{\widehat{G} \in \mathrm{HS}(\mathcal{H})} \, \widehat{\mathcal{R}}(\widehat{G}) + \gamma \| \widehat{G} \|_{\mathrm{HS}}^2$

- Kernel Ridge Regression (KRR) $G_{\gamma} := C_{\gamma}^{-1}T$: $W = K_{\gamma}^{-1}$, with $K = (k(x_i, x_j))_{i,j=1}^n$, $K_{\gamma} = K + \gamma I_n$ and $C_{\gamma} := C + \gamma I$
- Principal Component Regression (PCR, aka Kernel-DMD) $G_{r,\gamma}^{\text{PCR}} := \llbracket C_{\gamma} \rrbracket_{r}^{\dagger} T$: $W = \llbracket K_{\gamma} \rrbracket_{r}^{\dagger}$, where $\llbracket \cdot \rrbracket_{r}$ denotes *r*-truncated SVD

The estimators have the form $\ \, \widehat{G}=\widehat{S}^{*}W\widehat{Z}, \quad W\in \mathbb{R}^{n imes n}$

 $\min_{\substack{\widehat{G} \in \mathrm{HS}(\mathcal{H}) \\ \mathrm{rank}(\widehat{G}) \leq r}} \widehat{\mathcal{R}}(\widehat{G}) + \gamma \|\widehat{G}\|_{\mathrm{HS}}^2$

- Kernel Ridge Regression (KRR) $G_{\gamma} := C_{\gamma}^{-1}T$: $W = K_{\gamma}^{-1}$, with $K = (k(x_i, x_j))_{i,j=1}^n$, $K_{\gamma} = K + \gamma I_n$ and $C_{\gamma} := C + \gamma I$
- Principal Component Regression (PCR, aka Kernel-DMD) $G_{r,\gamma}^{\text{PCR}} := \llbracket C_{\gamma} \rrbracket_r^{\dagger} T$: $W = \llbracket K_{\gamma} \rrbracket_r^{\dagger}$, where $\llbracket \cdot \rrbracket_r$ denotes *r*-truncated SVD
- Reduced Rank Regression (RRR) $G_{r,\gamma}^{\text{RRR}} := C_{\gamma}^{-1/2} \llbracket C_{\gamma}^{-1/2} T \rrbracket_{r}^{r}$: $W = \sum_{i=1}^{r} u_{i} \otimes (Ku_{i})$ where u_{i} are the r leading eigenvectors of $LKu_{i} = \sigma_{i}^{2}K_{\gamma}u_{i}$, normalized as $u_{i}^{\top}KK_{\gamma}u_{i} = 1$, and $L = (k(y_{i}, y_{j}))_{i,j=1}^{n}$

The estimators have the form $\ \, \widehat{G}=\widehat{S}^{*}W\widehat{Z}, \quad W\in \mathbb{R}^{n imes n}$

$$\min_{\substack{\widehat{G} \in \mathrm{HS}(\mathcal{H}) \\ \mathrm{rank}(\widehat{G}) \leq r}} \widehat{\mathcal{R}}(\widehat{G}) + \gamma \|\widehat{G}\|_{\mathrm{HS}}^2$$

- Kernel Ridge Regression (KRR) $G_{\gamma} := C_{\gamma}^{-1}T$: $W = K_{\gamma}^{-1}$, with $K = (k(x_i, x_j))_{i,j=1}^n$, $K_{\gamma} = K + \gamma I_n$ and $C_{\gamma} := C + \gamma I_n$
- Principal Component Regression (PCR, aka Kernel-DMD) $G_{r,\gamma}^{\text{PCR}} := \llbracket C_{\gamma} \rrbracket_{r}^{\dagger} T$: $W = \llbracket K_{\gamma} \rrbracket_{r}^{\dagger}$, where $\llbracket \cdot \rrbracket_{r}$ denotes *r*-truncated SVD
- Reduced Rank Regression (RRR) $G_{r,\gamma}^{\text{RRR}} := C_{\gamma}^{-1/2} \llbracket C_{\gamma}^{-1/2} T \rrbracket_r$: $W = \sum_{i=1}^r u_i \otimes (Ku_i)$ where u_i are the r leading eigenvectors of $LKu_i = \sigma_i^2 K_{\gamma} u_i$, normalized as $u_i^{\top} K K_{\gamma} u_i = 1$, and $L = (k(y_i, y_j))_{i,j=1}^n$

Theorem: Let $W = \sum_{i=1}^{r} u_i \otimes v_i$, then the modal decomposition of \widehat{G} can be computed by solving an eigenvalue problem $(v_i^{\top} M u_j)_{i,j=1}^r \in \mathbb{R}^{r \times r}$, where $M = (k(x_i, y_j))_{i,j=1}^n$.

Let $G \in \mathrm{HS}\left(\mathcal{H}\right)$ be rank r and non-defective, then

$$G = \sum_{i=1}^{r} \lambda_i \ \psi_i \otimes \bar{\xi}_i, \quad G\psi_i = \lambda_i \psi_i, \quad G^* \xi_i = \overline{\lambda}_i \xi_i, \quad \langle \psi_i, \bar{\xi}_j \rangle_{\mathcal{H}} = \delta_{ij}, \ i, j \in [r],$$

and the mode decomposition of G is: $(G^th)(x) = \sum_{i=1}^r \lambda_i^t \langle h, \bar{\xi}_i \rangle_{\mathcal{H}} \psi_i(x), h \in \mathcal{H}, t \in \mathbb{N}$

Let $G \in \mathrm{HS}\left(\mathcal{H}\right)$ be rank r and non-defective, then

$$G = \sum_{i=1}^{r} \lambda_i \ \psi_i \otimes \bar{\xi}_i, \quad G\psi_i = \lambda_i \psi_i, \quad G^* \xi_i = \overline{\lambda}_i \xi_i, \quad \langle \psi_i, \bar{\xi}_j \rangle_{\mathcal{H}} = \delta_{ij}, \ i, j \in [r],$$

and the mode decomposition of G is: $(G^th)(x) = \sum_{i=1}^r \lambda_i^t \langle h, \bar{\xi_i} \rangle_{\mathcal{H}} \psi_i(x)$, $h \in \mathcal{H}$, $t \in \mathbb{N}$

Theorem

(i) Forecasting can get increasingly harder for larger *t*:

$$\|\mathbb{E}[h(X_t)|X_0 = \cdot] - S_{\pi}G^th\|_{L^2_{\pi}} \le \|A_{\pi}S_{\pi} - S_{\pi}G\| \left(\sum_{k=0}^{t-1} \|G^k\|\right) \|h\|$$

operator norm error

Let $G \in \mathrm{HS}\left(\mathcal{H}\right)$ be rank r and non-defective, then

$$G = \sum_{i=1}^{r} \lambda_i \ \psi_i \otimes \bar{\xi}_i, \quad G\psi_i = \lambda_i \psi_i, \quad G^* \xi_i = \overline{\lambda}_i \xi_i, \quad \langle \psi_i, \bar{\xi}_j \rangle_{\mathcal{H}} = \delta_{ij}, \ i, j \in [r],$$

and the mode decomposition of G is: $(G^th)(x) = \sum_{i=1}^r \lambda_i^t \langle h, \bar{\xi_i} \rangle_{\mathcal{H}} \psi_i(x)$, $h \in \mathcal{H}$, $t \in \mathbb{N}$

Theorem

(i) Forecasting can get increasingly harder for larger *t*:

$$\|\mathbb{E}[h(X_t)|X_0 = \cdot] - S_{\pi}G^th\|_{L^2_{\pi}} \le \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|}_{\text{operator norm error}} \left(\sum_{k=0}^{t-1} \|G^k\|\right) \|h\|$$

(ii) The pseudo eigen-pair $(\lambda_i, S_\pi \psi_i)$ error may be looser than the operator norm error:

$$\|(A_{\pi} - \lambda_{i}I)^{-1}\|^{-1} \leq \frac{\|(A_{\pi} - \lambda_{i}I)S_{\pi}\psi_{i}\|}{\|S_{\pi}\psi_{i}\|} \leq \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|}_{\mathcal{E}(G)} \underbrace{\frac{\|\psi_{i}\|}{\|S_{\pi}\psi_{i}\|}}_{\eta(\psi_{i})}$$

Let $G \in \mathrm{HS}\,(\mathcal{H})$ be rank r and non-defective, then

$$G = \sum_{i=1}^{r} \lambda_i \ \psi_i \otimes \bar{\xi}_i, \quad G\psi_i = \lambda_i \psi_i, \quad G^* \xi_i = \overline{\lambda}_i \xi_i, \quad \langle \psi_i, \bar{\xi}_j \rangle_{\mathcal{H}} = \delta_{ij}, \ i, j \in [r],$$

and the mode decomposition of G is: $(G^th)(x) = \sum_{i=1}^r \lambda_i^t \langle h, \bar{\xi_i} \rangle_{\mathcal{H}} \psi_i(x)$, $h \in \mathcal{H}$, $t \in \mathbb{N}$

Theorem

(i) Forecasting can get increasingly harder for larger *t*:

$$\|\mathbb{E}[h(X_t)|X_0 = \cdot] - S_{\pi}G^th\|_{L^2_{\pi}} \le \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|}_{\text{operator norm error}} \left(\sum_{k=0}^{t-1} \|G^k\|\right) \|h\|$$

(ii) The pseudo eigen-pair $(\lambda_i, S_\pi \psi_i)$ error may be looser than the operator norm error:

$$\|(A_{\pi} - \lambda_{i}I)^{-1}\|^{-1} \leq \frac{\|(A_{\pi} - \lambda_{i}I)S_{\pi}\psi_{i}\|}{\|S_{\pi}\psi_{i}\|} \leq \underbrace{\|A_{\pi}S_{\pi} - S_{\pi}G\|}_{\mathcal{E}(G)} \underbrace{\frac{\|\psi_{i}\|}{\|S_{\pi}\psi_{i}\|}}_{\eta(\psi_{i})}$$

To get grantees for KMD one needs to control operator norm error and metric distortion!

Key players: operator norm error and metric distortion

• Metric distortion: Let $\widehat{G} \in \operatorname{HS}_r(\mathcal{H})$. Then for all $i \in [r]$

$$-\frac{1}{\sqrt{\|C\|}} \leq \eta(\widehat{\psi}_i) \leq \frac{|\widehat{\lambda}_i|\operatorname{cond}(\widehat{\lambda}_i) \wedge \|\widehat{G}\|}{\sigma_{\min}^+(S_{\pi}\widehat{G})},$$

where $\operatorname{cond}(\widehat{\lambda}_i) := \|\widehat{\xi}_i\| \|\widehat{\psi}_i\| / |\langle \widehat{\psi}_i, \widehat{\xi}_i \rangle_{\mathcal{H}}|$ is the condition number of $\widehat{\lambda}_i$

Key players: operator norm error and metric distortion

• Metric distortion: Let $\widehat{G} \in HS_r(\mathcal{H})$. Then for all $i \in [r]$

$$\frac{1}{\sqrt{\|C\|}} \le \eta(\widehat{\psi}_i) \le \frac{|\widehat{\lambda}_i| \operatorname{cond}(\widehat{\lambda}_i) \wedge \|\widehat{G}\|}{\sigma_{\min}^+(S_{\pi}\widehat{G})},$$

where $\operatorname{cond}(\widehat{\lambda}_i) := \|\widehat{\xi}_i\| \|\widehat{\psi}_i\| / |\langle \widehat{\psi}_i, \widehat{\xi}_i \rangle_{\mathcal{H}}|$ is the condition number of $\widehat{\lambda}_i$

• Operator norm error: to analyze it we use the following decomposition

$$\mathcal{E}(\widehat{G}) \leq \underbrace{\|[I - P_{\mathcal{H}}]A_{\pi}S_{\pi}\|}_{\text{kernel selection bias}} + \underbrace{\|P_{\mathcal{H}}A_{\pi}S_{\pi} - S_{\pi}G_{\gamma}\|}_{\text{regularization bias}} + \underbrace{\|S_{\pi}(G_{\gamma} - G)\|}_{\text{rank reduction bias}} + \underbrace{\|S_{\pi}(G - \widehat{G})\|}_{\text{estimator's variance}},$$

where $G_{\gamma} := C_{\gamma}^{-1}T = \arg\min_{G \in \mathrm{HS}(\mathcal{H})} \mathcal{R}(G) + \gamma \|G\|_{\mathrm{HS}}^{2}$, and G being is the population version of the empirical estimator \widehat{G} .

Assumptions for deriving the learning bounds

(BC) Boundedness of the kernel. There exists $c_{\mathcal{H}} > 0$ such that $\underset{x \sim \pi}{\mathrm{ess}} \sup \|\phi(x)\|^2 \leq c_{\mathcal{H}}$

(SD) Spectral Decay of the kernel operator. There exists $\beta \in (0, 1]$ and a constant b > 0 such that $\lambda_j(C) \le b j^{-1/\beta}$, for all $j \in J$.

(SD) Spectral Decay of the kernel operator. There exists $\beta \in (0, 1]$ and a constant b > 0 such that $\lambda_j(C) \le b j^{-1/\beta}$, for all $j \in J$.

(RC) Regularity of A_{π} . For some $\alpha \in (0,2]$ there exists a > 0 such that $TT^* \leq a^2 C^{1+\alpha}$.

- (SD) Spectral Decay of the kernel operator. There exists $\beta \in (0, 1]$ and a constant b > 0 such that $\lambda_j(C) \le b j^{-1/\beta}$, for all $j \in J$.
- (RC) Regularity of A_{π} . For some $\alpha \in (0,2]$ there exists a > 0 such that $TT^* \leq a^2 C^{1+\alpha}$.
 - (RC) is weaker than the existing source condition (SRC) used for CME analysis that relies on the interpolation spaces, i.e. Im(A_πS_π) ⊆ Im(S_πC^{(α-1)/2})

- (SD) Spectral Decay of the kernel operator. There exists $\beta \in (0, 1]$ and a constant b > 0 such that $\lambda_j(C) \le b j^{-1/\beta}$, for all $j \in J$.
- (RC) Regularity of A_{π} . For some $\alpha \in (0,2]$ there exists a > 0 such that $TT^* \preceq a^2 C^{1+\alpha}$.
 - (RC) is weaker than the existing source condition (SRC) used for CME analysis that relies on the interpolation spaces, i.e. $\operatorname{Im}(A_{\pi}S_{\pi}) \subseteq \operatorname{Im}(S_{\pi}C^{(\alpha-1)/2})$
 - For example, with Gaussian RKHS ($\beta \rightarrow 0$), (SRC) does not hold for any $\alpha \in (0, 2]$, while if $A_{\pi}^* = A_{\pi}$ assumption (RC) holds true for at least $\alpha = 1$.

Error Learning Bounds

Theorem (Operator norm error)

Let A_{π} be an operator such that $\sigma_r(A_{\pi}S_{\pi}) > \sigma_{r+1}(A_{\pi}S_{\pi}) \ge 0$ for some $r \in \mathbb{N}$. Let (SD) and (RC) hold for some $\beta \in (0,1]$ and $\alpha \in [1,2]$, respectively, and let $cl(Im(S_{\pi})) = L^2_{\pi}(\mathcal{X})$. Given $\delta \in (0,1)$ let

$$\gamma \asymp n^{-rac{1}{lpha+eta}}$$
 and $arepsilon_n^\star := n^{-rac{lpha}{2(lpha+eta)}}$

Then, there exists a constant c > 0, such that for large enough $n \ge r$ and every $i \in [r]$, with probability at least $1 - \delta$ in the i.i.d. draw of $(x_i, y_i)_{i=1}^n$ from ρ

$$\mathcal{E}(\widehat{G}_{\mathrm{RRR}}) \le \sigma_{r+1}(A_{\pi}S_{\pi}) + c \varepsilon_n^{\star} \ln \delta^{-1}$$

and, assuming that $\sigma_r(S_{\pi}) > \sigma_{r+1}(S_{\pi})$,

 $\mathcal{E}(\widehat{G}_{PCR}) \le \sigma_{r+1}(S_{\pi}) + c \,\varepsilon_n^{\star} \,\ln \delta^{-1}.$

Error Learning Bounds

Theorem (Operator norm error)

Let A_{π} be an operator such that $\sigma_r(A_{\pi}S_{\pi}) > \sigma_{r+1}(A_{\pi}S_{\pi}) \ge 0$ for some $r \in \mathbb{N}$. Let (SD) and (RC) hold for some $\beta \in (0,1]$ and $\alpha \in [1,2]$, respectively, and let $cl(Im(S_{\pi})) = L^2_{\pi}(\mathcal{X})$. Given $\delta \in (0,1)$ let

$$\gamma \asymp n^{-rac{1}{lpha+eta}}$$
 and $arepsilon_n^\star := n^{-rac{lpha}{2(lpha+eta)}}$

Then, there exists a constant c > 0, such that for large enough $n \ge r$ and every $i \in [r]$, with probability at least $1 - \delta$ in the i.i.d. draw of $(x_i, y_i)_{i=1}^n$ from ρ

$$\mathcal{E}(\widehat{G}_{\mathrm{RRR}}) \le \sigma_{r+1}(A_{\pi}S_{\pi}) + c \varepsilon_n^{\star} \ln \delta^{-1}$$

and, assuming that $\sigma_r(S_{\pi}) > \sigma_{r+1}(S_{\pi})$,

$$\mathcal{E}(\widehat{G}_{PCR}) \le \sigma_{r+1}(S_{\pi}) + c \,\varepsilon_n^{\star} \,\ln \delta^{-1}.$$

Moreover, the rate matches the minimax lower bound for the operator norm error when learning finite rank A_{π} , $r \geq 2$,

$$\mathcal{E}(\widehat{G}) \ge c\,\delta^q\,\varepsilon_n^\star.$$

Koopman spectra for time-reversal invariant processes

Example (Langevin Dynamics)

Let $\mathcal{X} = \mathbb{R}^d$ and let $\beta > 0$. The (overdamped) Langevin equation driven by a potential $U : \mathbb{R}^d \to \mathbb{R}$ is given by

$$dX_t = -\nabla U(X_t)dt + \sqrt{2\beta^{-1}}dW_t,$$

where W_t is a Wiener process. The invariant measure of this process is the *Boltzman* distribution $\pi(dx) \propto e^{-\beta U(x)} dx$, and the associated Koopman operator is self-adjoint.

Koopman spectra for time-reversal invariant processes

Example (Langevin Dynamics)

Let $\mathcal{X} = \mathbb{R}^d$ and let $\beta > 0$. The (overdamped) Langevin equation driven by a potential $U : \mathbb{R}^d \to \mathbb{R}$ is given by

$$dX_t = -\nabla U(X_t)dt + \sqrt{2\beta^{-1}}dW_t,$$

where W_t is a Wiener process. The invariant measure of this process is the *Boltzman* distribution $\pi(dx) \propto e^{-\beta U(x)} dx$, and the associated Koopman operator is self-adjoint.

• Koopman operator for time-reversal invariant processes is self-adjoint, i.e. $A_{\pi}^* = A_{\pi}$.

Example (Langevin Dynamics)

Let $\mathcal{X} = \mathbb{R}^d$ and let $\beta > 0$. The (overdamped) Langevin equation driven by a potential $U : \mathbb{R}^d \to \mathbb{R}$ is given by

$$dX_t = -\nabla U(X_t)dt + \sqrt{2\beta^{-1}}dW_t,$$

where W_t is a Wiener process. The invariant measure of this process is the *Boltzman* distribution $\pi(dx) \propto e^{-\beta U(x)} dx$, and the associated Koopman operator is self-adjoint.

- Koopman operator for time-reversal invariant processes is self-adjoint, i.e. $A_{\pi}^* = A_{\pi}$.
- If additionally we assume compactness of A_{π} (e.g. if $p(x, \cdot) \ll \pi$, for all $x \in \mathcal{X}$), then

$$A_{\pi} = \sum_{i \in \mathbb{N}} \mu_i f_i \otimes f_i,$$

where $(\mu_i, f_i)_{i \in \mathbb{N}} \subseteq \mathbb{R} \times L^2_{\pi}(\mathcal{X})$ are Koopman eigenpairs, i.e. $A_{\pi}f_i = \mu_i f_i$. Moreover, $\lim_{i \to \infty} \mu_i = 0$ and $\{f_i\}_{i \in \mathbb{N}}$ form a complete orthonormal system of $L^2_{\pi}(\mathcal{X})$.

Estimation of Koopman spectra in self-adjoint case

• Let $(\widehat{\lambda}_i, \widehat{\psi}_i)_{i=1}^r$ be its eigen-pairs a rank r estimator $\widehat{G} \in \mathrm{HS}(\mathcal{H})$ of A_{π} , i.e. $\widehat{G}\widehat{\psi}_i = \widehat{\lambda}_i \widehat{\psi}_i$.

Estimation of Koopman spectra in self-adjoint case

- Let $(\widehat{\lambda}_i, \widehat{\psi}_i)_{i=1}^r$ be its eigen-pairs a rank r estimator $\widehat{G} \in \mathrm{HS}\left(\mathcal{H}\right)$ of A_{π} , i.e. $\widehat{G}\widehat{\psi}_i = \widehat{\lambda}_i \, \widehat{\psi}_i$.
- To compare $\widehat{\psi}_i$ with the corresponding true Koopman eigenfunction f_i , using S_{π} , we inject $\widehat{\psi}_i$ in $L^2_{\pi}(\mathcal{X})$ to define the normalized estimated eigenfunction

$$\widehat{f}_i = S_\pi \widehat{\psi}_i / \|S_\pi \widehat{\psi}_i\|, \ i \in [r].$$

Estimation of Koopman spectra in self-adjoint case

- Let $(\widehat{\lambda}_i, \widehat{\psi}_i)_{i=1}^r$ be its eigen-pairs a rank r estimator $\widehat{G} \in \mathrm{HS}(\mathcal{H})$ of A_{π} , i.e. $\widehat{G}\widehat{\psi}_i = \widehat{\lambda}_i \, \widehat{\psi}_i$.
- To compare $\hat{\psi}_i$ with the corresponding true Koopman eigenfunction f_i , using S_{π} , we inject $\hat{\psi}_i$ in $L^2_{\pi}(\mathcal{X})$ to define the normalized estimated eigenfunction

$$\widehat{f}_i = S_\pi \widehat{\psi}_i / \|S_\pi \widehat{\psi}_i\|, \ i \in [r].$$

• Using the classical Davis-Kahan spectral perturbation result we get

$$egin{aligned} |\widehat{\lambda}_i - \mu_i| &\leq \|(\widehat{\lambda}_i I - A_\pi)^{-1}\|^{-1} \leq \mathcal{E}(\widehat{G}) \; \eta(\widehat{\psi}_i), & ext{and} \ \|\widehat{f}_i - f_i\|^2 &\leq rac{2|\widehat{\lambda}_i - \mu_i|}{[ext{gap}_i(A_\pi) - |\widehat{\lambda}_i - \mu_i|]_+}, \end{aligned}$$

where $gap_i(A_\pi) = \min_{j \neq j} |\mu_j - \mu_j|$.

Estimation of Koopman spectra in self-adjoint case

- Let $(\widehat{\lambda}_i, \widehat{\psi}_i)_{i=1}^r$ be its eigen-pairs a rank r estimator $\widehat{G} \in \mathrm{HS}(\mathcal{H})$ of A_{π} , i.e. $\widehat{G}\widehat{\psi}_i = \widehat{\lambda}_i \, \widehat{\psi}_i$.
- To compare $\hat{\psi}_i$ with the corresponding true Koopman eigenfunction f_i , using S_{π} , we inject $\hat{\psi}_i$ in $L^2_{\pi}(\mathcal{X})$ to define the normalized estimated eigenfunction

$$\widehat{f}_i = S_\pi \widehat{\psi}_i / \|S_\pi \widehat{\psi}_i\|, \ i \in [r].$$

• Using the classical Davis-Kahan spectral perturbation result we get

$$\begin{split} |\widehat{\lambda}_i - \mu_i| &\leq \|(\widehat{\lambda}_i I - A_\pi)^{-1}\|^{-1} \leq \mathcal{E}(\widehat{G}) \ \eta(\widehat{\psi}_i), \text{ and} \\ \|\widehat{f}_i - f_i\|^2 &\leq \frac{2|\widehat{\lambda}_i - \mu_i|}{[\operatorname{gap}_i(A_\pi) - |\widehat{\lambda}_i - \mu_i|]_+}, \end{split}$$

where $\operatorname{gap}_i(A_{\pi}) = \min_{j \neq j} |\mu_j - \mu_j|$.

• Spuriousness of spectra can arise purely from the learning problem, i.e.

"well learned" operator (small error) but "badly learned" spectra (eigenvalues far apart)

Spectral Learning Bounds

Theorem (Spectral bounds for self-adjoint Koopman)

Let A_{π} be a compact self-adjoint operator. Under the assumptions of the previous Theorem, there exists a constant c > 0, depending only on \mathcal{H} , such that for every $\delta \in (0,1)$, for every large enough $n \ge r$ and every $i \in [r]$ with probability at least $1 - \delta$ in the i.i.d. draw of $(x_i, y_i)_{i=1}^n$ from ρ

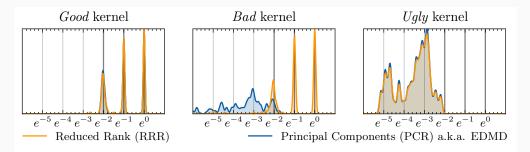
$$|\widehat{\lambda}_i - \mu_{j(i)}| \leq \begin{cases} \frac{2\sigma_{r+1}(A_{\pi}S_{\pi})}{\sigma_r(A_{\pi}S_{\pi})} + c\,\varepsilon_n^{\star}\ln\delta^{-1} & \text{if } \widehat{G} = \widehat{G}_{r,\gamma}^{\text{RRR}}, \\ \frac{2\sigma_{r+1}(S_{\pi})}{[\sigma_r(A_{\pi}S_{\pi}) - \sigma_{r+1}^{\alpha}(S_{\pi})]_+} + c\,\varepsilon_n^{\star}\ln\delta^{-1} & \text{if } \widehat{G} = \widehat{G}_{r,\gamma}^{\text{PCR}}. \end{cases}$$

Moreover, $|\widehat{\lambda}_i - \mu_{j(i)}| \le s_i(\widehat{G}) + +c \varepsilon_n^\star \ln \delta^{-1}$, where the empirical bias is given by

$$s_i(\widehat{G}) := \begin{cases} \widehat{\eta}_i \, \sigma_{r+1}(\widehat{C}^{-1/2}\widehat{T}), & \widehat{G} = \widehat{G}_{r,\gamma}^{\mathrm{RRR}}, \\ \\ \widehat{\eta}_i \, \sqrt{\sigma_{r+1}(\widehat{C})}, & \widehat{G} = \widehat{G}_{r,\gamma}^{\mathrm{PCR}}. \end{cases}$$

Experiments

Example: Choice of the kernel



PCR vs. RRR in estimating slow dynamics of 1D Ornstein-Uhlenbeck process

$$X_t = e^{-1} X_{t-1} + \sqrt{1 - e^{-2}} \,\epsilon_t,$$

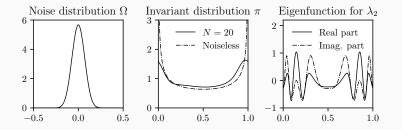
where $\{\epsilon_t\}_{t>1}$ are independent standard Gaussians.

We use three different kernels over 50 independent trials. Vertical lines correspond to Koopman eigenvalues. The *good* kernel is such that its \mathcal{H} corresponds to the leading eigenspace of the Koopman operator, while the other two use permuted eigenfunctions to distort the metric and introduce slow (*bad* kernel) and fast (*ugly* kernel) spectral decay of the covariance.

Let F(x) := 4x(1-x) over $\mathcal{X} = [0,1]$ and consider the discrete dynamical system

 $x_{t+1} = (F(x_t) + \xi_t) \mod 1,$

where ξ_t are i.i.d. with law $\Omega(d\xi) \propto \cos^N(\pi\xi) d\xi$, N even



For this system we are able to evaluate the spectral decomposition of A_{π} : rank $(A_{\pi})=N+1$ and the eigenvalues decay fast: $\lambda_1=1$, $\lambda_{2,3}=-0.193\pm 0.191i$, and $|\lambda_{4,5}|\approx 0.027$.

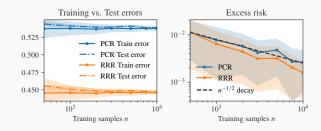
Experimental setting: 10^4 training points, 500 test points, 100 repetitions

Estimator	Training error	Test error	
PCR	0.2 ± 0.003	0.18 ± 0.00051	
RRR	0.13 ± 0.002	0.13 ± 0.00032	
KRR	0.032 ± 0.00057	0.13 ± 0.00068	

Experimental setting: 10^4 training points, 500 test points, 100 repetitions

Estimator	Training error	Test error	
PCR	0.2 ± 0.003	0.18 ± 0.00051	
RRR	0.13 ± 0.002	0.13 ± 0.00032	
KRR	0.032 ± 0.00057	0.13 ± 0.00068	

• Empirically we verify bounds!

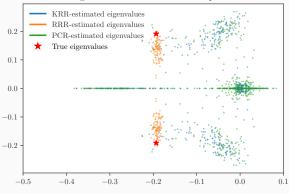


Experimental setting: 10^4 training points, 500 test points, 100 repetitions

Estimator	Training error	Test error	$ \lambda_1 - \hat{\lambda}_1 / \lambda_1 $	$ \lambda_{2,3} - \hat{\lambda}_{2,3} / \lambda_{2,3} $
PCR RRR KRR	$\begin{array}{c} 0.2 \pm 0.003 \\ 0.13 \pm 0.002 \\ \textbf{0.032 \pm 0.00057} \end{array}$	$\begin{array}{c} 0.18 \pm 0.00051 \\ \textbf{0.13} \pm \textbf{0.00032} \\ \textbf{0.13} \pm \textbf{0.00068} \end{array}$	$9.6 \cdot 10^{-5} \pm 7.2 \cdot 10^{-5} \\ 5.1 \cdot 10^{-6} \pm 3.8 \cdot 10^{-6} \\ 7.9 \cdot 10^{-7} \pm 5.7 \cdot 10^{-7}$	0.85 ± 0.03 0.16 ± 0.1 0.48 ± 0.17

- Empirically we verify bounds!
- $\lambda_1 = 1$ (corresponding to the equilibrium mode) is well approximated by all estimators
- RRR always outperforms PCR and it best estimates the non-trivial eigenvalues $\lambda_{2,3}$

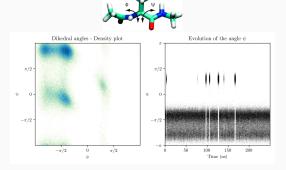
Estimated eigenvalues over 100 different independent datasets



Simulation of the molecule Alanine dipeptide from the Computational Molecular Biology Group, Freie Universität Berlin:

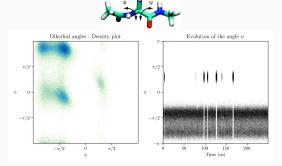
- dynamics governed by the Langevin equation is Markovian
- exists an invariant measure called Boltzmann distribution
- equations are time-reversal-invariant, so

$$A_{\pi} = A_{\pi}^*$$

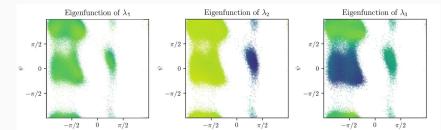


Simulation of the molecule Alanine dipeptide from the Computational Molecular Biology Group, Freie Universität Berlin:

- dynamics governed by the Langevin equation is Markovian
- exists an invariant measure called Boltzmann distribution
- equations are time-reversal-invariant, so $A_{\pi} = A_{\pi}^{*}$



The estimated evals $\lambda_1 = 0.9992$, $\lambda_2 = 0.9177$, $\lambda_3 = 0.4731$, $\lambda_4 = -0.0042$ and $\lambda_5 = -0.0252$.

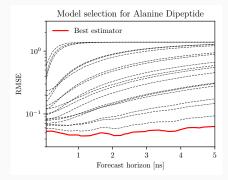


• In this example we show that minimizing the empirical spectral bias over a validation dataset, is also a good criterion for Koopman model selection.

- In this example we show that minimizing the empirical spectral bias over a validation dataset, is also a good criterion for Koopman model selection.
- We trained 19 RRR estimators each corresponding to a different kernel and then we evaluated the forecasting RMSE over 5000 validation points from 2000 initial conditions drawn from a test dataset.

- In this example we show that minimizing the empirical spectral bias over a validation dataset, is also a good criterion for Koopman model selection.
- We trained 19 RRR estimators each corresponding to a different kernel and then we evaluated the forecasting RMSE over 5000 validation points from 2000 initial conditions drawn from a test dataset.

• Forecasting RMSE shows how the best model according to the empirical spectral bias metric also attains the best forecasting performances by a large margin.



Example: Koopman Operator with "Deep" Kernels

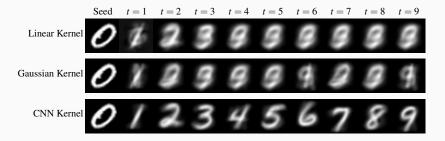
• In computer vision, kernels defined from neural-network feature maps outperform classical ones

Example: Koopman Operator with "Deep" Kernels

- In computer vision, kernels defined from neural-network feature maps outperform classical ones
- We compare Linear, Gaussian and *Convolutional Neural Network (CNN)* kernels, the latter being

$$k_{\boldsymbol{w}}(x,x') := \langle \phi_{\boldsymbol{w}}(x), \phi_{\boldsymbol{w}}(x') \rangle$$

where $\phi_{\pmb{w}}$ is the last layer of a pretrained CNN classifier. Training data size =1000



 $Conv2d(1,16;5) \rightarrow ReLU \rightarrow MaxPool(2) \rightarrow Conv2d(16,32;5) \rightarrow ReLU \rightarrow MaxPool(2) \rightarrow Dense(1568,10)$

Deep Learning of a good RKHS

Deep Projection Networks

• What is a good RKHS?

dominant Koopman efuns captured, no kernel selection bias and no metric distorsion

 $P_{\mathcal{H}}A_{\pi}P_{\mathcal{H}} \approx A_{\pi}, \quad \|[I - P_{\mathcal{H}}]A_{\pi}S_{\pi}\| \rightsquigarrow 0 \quad \text{ and } \quad \eta(\psi) = \|\psi\| \,/ \, \|C^{1/2}\psi\| \rightsquigarrow 1$

Deep Projection Networks

• What is a good RKHS?

dominant Koopman efuns captured, no kernel selection bias and no metric distorsion

$$P_{\mathcal{H}}A_{\pi}P_{\mathcal{H}} \approx A_{\pi}, \quad \|[I - P_{\mathcal{H}}]A_{\pi}S_{\pi}\| \rightsquigarrow 0 \quad \text{and} \quad \eta(\psi) = \|\psi\| / \|C^{1/2}\psi\| \rightsquigarrow 1$$

• The idea is to parameterize two feature vectors one for input and one for the output:

$$\phi_w(x) := [\phi_{w,1}(x), \dots, \phi_{w,\ell}(x)] \in \mathbb{R}^{\ell} \text{ and } \phi_{w'}(y) := [\phi_{w',1}(y), \dots, \phi_{w',\ell}(y)] \in \mathbb{R}^{\ell}$$

and then, using covariance operators

$$C_X^w = \mathbb{E}\phi_w(X) \otimes \phi_w(X), \ C_{XY}^{ww'} = \mathbb{E}\phi_w(X) \otimes \phi_{w'}(Y) \text{ and } C_Y^{w'} = \mathbb{E}\phi_{w'}(Y) \otimes \phi_{w'}(Y),$$

maximize the regularized score

$$\max_{w,w'} \underbrace{\frac{\|C_{XY}^{ww'}\|_{\mathrm{HS}}^2}{\|C_X^w\|\|C_Y^{w'}\|}}_{\leq \|P_{\mathcal{H}_w}A_{\pi}P_{\mathcal{H}_{w'}}\|_{\mathrm{HS}}^2} -\gamma \underbrace{\left(\|C_X^w - I\|_{\mathrm{HS}}^2 + \|C_Y^{w'} - I\|_{\mathrm{HS}}^2\right)}_{\text{reducing the metric distortion}}$$

Challenges & open problems

Thank You!

Trajectory data

• With notion of beta mixing coefficients:

$$\beta_{\mathbf{X}}(\tau) = \sup_{B \in \Sigma \otimes \Sigma} \left| \mu_{\{1,1+\tau\}}(B) - \mu_{\{1\}} \times \mu_{\{1\}}(B) \right|$$

we prove that for $B \in \Sigma_{[1:m]} \left| \mu_{[1:m]} \left(B \right) - \mu_{\{1\}}^m \left(B \right) \right| \le (m-1) \, \beta_{\mathbf{X}} \left(1 \right)$, and derive

• Lemma 1 Let X be strictly stationary with values in a normed space $(\mathcal{X}, \|\cdot\|)$, and assume $n = 2m\tau$ for $\tau, m \in \mathbb{N}$. Moreover, let Z_1, \ldots, Z_m be m independent copies of $Z_1 = \sum_{i=1}^{\tau} X_i$. Then for s > 0

$$\mathbb{P}\left\{\left\|\sum_{i=1}^{n} X_{i}\right\| > s\right\} \leq 2 \mathbb{P}\left\{\left\|\sum_{j=1}^{m} Z_{j}\right\| > \frac{s}{2}\right\} + 2(m-1)\beta_{\mathbf{X}}(\tau).$$

• We generalize Prop. 2 as **Proposition 3:** Let $\delta > (m-1)\beta_{\mathbf{X}}(\tau-1)$. With probability at least $1-\delta$ in the draw $x_1 \sim \pi, x_i \sim p(x_{i-1}, \cdot), i \in [2:n]$,

$$\|\widehat{T} - T\| \le \frac{48}{m} \ln \frac{4m\tau}{\delta - (m-1)\beta_{\mathbf{X}}(\tau - 1)} + 12\sqrt{\frac{2\|C\|}{m} \ln \frac{4m\tau}{\delta - (m-1)\beta_{\mathbf{X}}(\tau - 1)}}.$$