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Problem & Our Approach



Problem

We wish to learn a dynamical system from data (trajectories) in a form that can:

• predict future states

• explain complex dynamics via recurring patterns

• interpret spacial and temporal relations of the states

• be used to control the dynamical process

• . . .
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An Easy Example: Noisy Linear Dynamics

State space X = Rd, F ∈ Rd×d and Xt+1 =FXt+ωt, ωt i.i.d. N (0, σ2Id)

• Eigenvalue decomposition (not an SVD!): (λi, ui, vi) ∈ C× Cd × Cd,

Fvi = λivi, u
∗
iF = λiu

∗
i and u∗i vj = δij =⇒ F =

∑
i∈[d]

λiviu
∗
i

• Expected dynamics: E[Xt |X0 = x] = F tx =
∑
i∈[d]

λti (u
∗
i x) vi

A different perspective via measurements/observables :

• F := {fw := 〈·, w〉 : Rd → R |w ∈ Rd} =⇒ E[fw(Xt+1) |Xt = x] = 〈x, F ∗w〉 = fF∗w(x)

• Expected dynamics of observables :

fw ∈ F =⇒ E[fw(Xt) |X0 =x] = 〈x, (F ∗)tw〉 =
∑
i∈[d]

λti 〈fw, fvi〉F fui(x)

• Even when F is not linear, the mapping f 7→ E[f(Xt+1) |Xt = x] is linear!
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Koopman Operator Framework

• Let {Xt : t∈N} be a time-homogeneous Markov chain,

P {Xt+1 ∈ B | Xt = x} = p(x, B)︸ ︷︷ ︸
transition kernel

, (x,B) ∈ X × ΣX , t ∈ N

• If F ⊂ RX is a vector space of observables its Koopman operator AF : F → F is

[AFf ](x) :=

∫
X
p(x, dy)f(y) = E [f(Xt+1)|Xt = x] , f ∈ F , x ∈ X

• We can use spectral theory: if ∃(µi, gi, fi) ∈ C×F×F , i ∈ N, s.t.

AFfi = µifi, A∗Fgi = µ̄igi, 〈fi, ḡj〉 = δij , i, j ∈ N

then the Koopman Mode Decomposition of f ∈ span{f1, f2, ...}:

[AtFf ](x) = E[f(Xt) |X0 = x] =
∑
i

µti 〈f, ḡi〉 fi(x), x ∈ X , t ∈ N
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Koopman Mode Decomposition (KMD)

[AtFf ](x) = E[f(Xt) |X0 = x] =
∑
i

µti 〈f, ḡi〉fi(x), x ∈ X , t ∈ N

• Time oscillations λti with amplitudes

|λi|t and frequencies eiArg(λi)t, i.e.

=(lnλi)

2π∆t

• Static modes 〈f, ξ̄i〉 of observable f

• Terms ψi(x) depending only on the

initial condition

(Picture from [Kutz et al. 2016])
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Our Approach

Let’s use the kernel trick - replace 〈x, y〉 with k(x, y) = 〈φ(x), φ(y)〉!

(Picture from [Kutz et al. 2016])

KOR GitHub page kooplearn SciKit Learn compliant & KeOps implementations
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kooplearn in action...
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Some interesting applications



Molecular Dynamics

(Picture from [Meanti et al. 2023])
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Epidemiology

(Picture from [Kutz et al. 2016])

Koopman modes give insights into spatio-temporal correlations
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Neuroscience

(Picture from [Kutz et al. 2016])
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Statistical Learning Framework



Which Koopman are We Learning ?

AF : F → F , (AFf)(x) =

∫
X
p(x, dy)f(y) = E [f(Xt+1)|Xt = x]

• What is an appropriate F?

Assuming invariant distribution π:

π(B) =

∫
X
π(dx) p(x,B)︸ ︷︷ ︸
joint distribution ρ

, ∀ B ∈ ΣX

we can choose F = L2
π(X ), and denote Aπ ≡ AL2

π(X ). In general ‖Aπ‖ = 1 and

Aπf = f , for π-a.e. constant function f !

Our example: If F = F ∗ and ‖F‖ < 1, then π ≡ N (0, C) for C = σ2(I − F 2)−1

• How to learn Aπ from data when not even a domain is available?

• k : X × X → R be a positive definite kernel such that k(·, ·) <∞ π-a.e.

• H the associated reproducing kernel Hilbert spaces (RKHS) is then H ⊆ L2
π(X )

• with feature map φ(x) := k(x, ·) we form subspaces from data (xi)i by
∑
i

ciφ(xi)

• we use the reproducing property h(x) = 〈φ(x), h〉H, also known as a ”kernel trick”
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Statistical Learning Framework

• Let’s start with a notion of risk of a potential estimator G : H → H:

R(G) = E
[∑
i∈N

(hi(Xt+1)− (Ghi)(Xt))
2
]

i.e.

the cumulative expected one-step-ahead prediction error over an o.n. basis (hi)i∈N of H.

• Kernel trick: Embed data and aim to learn G : H → H s.t.

G∗φ(X) ≈ φ(Y ), (X,Y ) ∼ ρ

L2
π(!)

Aπ

Sπ Sπ

Gℋ ℋ

L2
π(!)

Im(Sπ) Im(AπSπ)

! ϕ

• The risk has equivalent form R(G) := E(X,Y )∼ρ‖φ(Y )−G∗φ(X)‖2

• and we have the bias-variance decomposition

E(X,Y )∼ρ‖φ(Y )−G∗φ(X)‖2︸ ︷︷ ︸
R(G)

= EX∼π‖gp(X)−G∗φ(X)‖2︸ ︷︷ ︸
excess risk

+E(X,Y )∼ρ‖gp(X)− φ(Y )‖2︸ ︷︷ ︸
irreducible risk R0

• gp is known as the conditional mean embedding (CME) of transition kernel p into H!
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Statistical Learning Framework

• Since k(·, ·) ∈ L2
π(X ) then H ⊆ L2

π(X ), so

the injection operator Sπ is Hilbert-Schmidt

• The restriction of the Koopman operator to H
Aπ |H ≡ AπSπ is then Hilbert-Schmidt, too!

• We should solve the inverse problem SπG = AπSπ

• But, since the risk can be decomposed as

R(G) = ‖AπSπ − SπG‖2HS︸ ︷︷ ︸
E2HS(G)

+ ‖Sπ‖2HS − ‖AπSπ‖2HS︸ ︷︷ ︸
R0

Aπ

Sπ

G

ℋ

ℋ

L2
π(")

Im(Sπ)

" ϕ

Sπℋ
L2

π(")

Im(Sπ)

Sπℋ
L2

π(")

Im(Sπ)

the problem of learning Aπ |H by SπG is equivalent to learning gp by G∗φ(·)!

Duality with CME is via reproducing property [Aπ |Hh](x) = 〈h, gp(x)〉H

• How well can we learn Aπ via H?
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Statistical Learning Framework

• Proposition: If PH is orthogonal projector onto

cl(Im(Sπ)) in L2
π(X ), then for every δ > 0 there

exists a finite rank non-defective operator G such

that ‖AπSπ − SπG‖2HS ≤ ‖[I − PH]AπSπ‖2HS + δ.

• Remark: Im(AπSπ) ⊆ cl(Im(Sπ)) holds for

H that is dense in L2
π(X ) (i.e. for universal k)

which implies that PH = I.

• Two cases arise depending on whether

infG∈HS(H) E(G) is attained or not:

Aπ

Sπ

G

ℋ

ℋ

L2
π(")

Im(Sπ)

" ϕ

Sπℋ
L2

π(")

Im(AπSπ)

Sπℋ
L2

π(")

Im(Sπ)

Aπ

L2
π(")

Im(AπSπ)

(i) well-specified case, there exists π-a.e. Koopman operator GH := C†T ∈ HS (H),

where C := EX∼πφ(X)⊗ φ(X) and T := E(X,Y )∼ρφ(X)⊗ φ(Y ), i.e.

AπSπ = SπGH ⇐⇒ GHf = E[f(Xt+1) |Xt = ·] π-a.e. for every f ∈ H.

(ii) misspecified case, H does not admit a HS π-a.e. Koopman operator H → H
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Empirical Estimators

and Statistical Bounds



Empirical Estimators of Aπ

• We either observe an i.i.d. D = (xi, yi)
n
i=1 from ρ, or from a trajectory . . . , xi, xi+1︸ ︷︷ ︸

yi

, . . .

• The Koopman Operator Regression is then: Given the data D solve min
G∈HS(H)

R(G)

• Different estimators arise by minimizing over a set of operators the empirical risk

R̂(G) :=
1

n

n∑
i=1

‖φ(yi)−G∗φ(xi)‖2H

or, equivalently,

R̂(G) ≡ ‖Ẑ − ŜG‖2HS

using the sampling operators Ŝ, Ẑ ∈ HS (H,Rn) of inputs and outputs

Ŝf =
(
n−

1
2 f(xi)

)n
i=1

, Ẑf =
(
n−

1
2 f(yi)

)n
i=1

that lead to covariance and cross-covariance operators

Ĉ = Ŝ∗Ŝ =
1

n

∑
i∈[n]

φ(xi)⊗ φ(xi) and T̂ = Ŝ∗Ẑ =
1

n

∑
i∈[n]

φ(xi)⊗ φ(yi)

17
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Estimators via ERM

The estimators have the form Ĝ = Ŝ∗WẐ, W ∈ Rn×n

min
Ĝ∈HS(H)

rank(Ĝ)≤r

R̂(Ĝ) + γ‖Ĝ‖2HS

• Kernel Ridge Regression (KRR) Gγ := C−1
γ T :

W = K−1
γ , with K = (k(xi, xj))

n
i,j=1, Kγ = K + γIn and Cγ := C + γI

• Principal Component Regression (PCR, aka Kernel-DMD) GPCR
r,γ := [[Cγ ]]†r T :

W = [[Kγ ]]†r, where [[·]]r denotes r-truncated SVD

• Reduced Rank Regression (RRR) GRRR
r,γ := C

−1/2
γ [[C

−1/2
γ T ]]r:

W =
∑r
i=1 ui ⊗ (Kui) where ui are the r leading eigenvectors of LKui = σ2

iKγui,

normalized as u>i KKγui = 1, and L = (k(yi, yj))
n
i,j=1

Theorem: Let W=
∑r
i=1 ui ⊗ vi, then the modal decomposition of Ĝ can be computed by

solving an eigenvalue problem (v>i Muj)
r
i,j=1 ∈ Rr×r, where M=(k(xi, yj))

n
i,j=1.

18
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Learning KMD

Let G ∈ HS (H) be rank r and non-defective, then

G =

r∑
i=1

λi ψi ⊗ ξ̄i, Gψi = λiψi, G∗ξi = λiξi, 〈ψi, ξ̄j〉H = δij , i, j ∈ [r],

and the mode decomposition of G is: (Gth)(x) =
∑r
i=1 λ

t
i〈h, ξ̄i〉Hψi(x), h ∈ H, t ∈ N

Theorem

(i) Forecasting can get increasingly harder for larger t:

‖E[h(Xt)|X0 = · ]− SπGth‖L2
π
≤ ‖AπSπ − SπG‖︸ ︷︷ ︸

operator norm error

(∑t−1
k=0‖Gk‖

)
‖h‖

(ii) The pseudo eigen-pair (λi, Sπψi) error may be looser than the operator norm error:

‖(Aπ − λiI)−1‖−1 ≤ ‖(Aπ − λiI)Sπψi‖
‖Sπψi‖

≤ ‖AπSπ − SπG‖︸ ︷︷ ︸
E(G)

‖ψi‖
‖Sπψi‖︸ ︷︷ ︸
η(ψi)

To get grantees for KMD one needs to control operator norm error and metric distortion!
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Key players: operator norm error and metric distortion

• Metric distortion: Let Ĝ∈HSr(H). Then for all i ∈ [r]

1√
‖C‖

≤ η(ψ̂i) ≤
|λ̂i| cond(λ̂i) ∧ ‖Ĝ‖

σ+
min(SπĜ)

,

where cond(λ̂i) := ‖ξ̂i‖‖ψ̂i‖/|〈ψ̂i, ξ̂i〉H| is the condition number of λ̂i

• Operator norm error: to analyze it we use the following decomposition

E(Ĝ) ≤ ‖[I − PH]AπSπ‖︸ ︷︷ ︸
kernel selection bias

+ ‖PHAπSπ − SπGγ‖︸ ︷︷ ︸
regularization bias

+ ‖Sπ(Gγ −G)‖︸ ︷︷ ︸
rank reduction bias

+ ‖Sπ(G− Ĝ)‖︸ ︷︷ ︸
estimator’s variance

,

where Gγ := C−1
γ T = arg minG∈HS(H)R(G) + γ‖G‖2HS, and G being is the population

version of the empirical estimator Ĝ.
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Assumptions for deriving the learning bounds

(BC) Boundedness of the kernel. There exists cH> 0 such that ess sup
x∼π

‖φ(x)‖2 ≤ cH

(SD) Spectral Decay of the kernel operator. There exists β ∈ (0, 1] and a constant b> 0 such

that λj(C)≤ b j−1/β , for all j ∈ J .

(RC) Regularity of Aπ. For some α ∈ (0, 2] there exists a > 0 such that TT ∗ � a2C1+α.

• (RC) is weaker than the existing source condition (SRC) used for CME analysis that relies

on the interpolation spaces, i.e. Im(AπSπ) ⊆ Im(Sπ C
(α−1)/2)

• For example, with Gaussian RKHS (β → 0), (SRC) does not hold for any α ∈ (0, 2], while

if A∗π = Aπ assumption (RC) holds true for at least α = 1.
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Error Learning Bounds

Theorem (Operator norm error)

Let Aπ be an operator such that σr(AπSπ) > σr+1(AπSπ) ≥ 0 for some r ∈ N. Let (SD) and
(RC) hold for some β ∈ (0, 1] and α ∈ [1, 2], respectively, and let cl(Im(Sπ)) = L2

π(X ). Given

δ ∈ (0, 1) let

γ � n− 1
α+β and ε?n := n−

α
2(α+β) .

Then, there exists a constant c> 0, such that for large enough n ≥ r and every i ∈ [r], with

probability at least 1− δ in the i.i.d. draw of (xi, yi)
n
i=1 from ρ

E(ĜRRR) ≤ σr+1(AπSπ)+c ε?n ln δ−1

and, assuming that σr(Sπ) > σr+1(Sπ),

E(ĜPCR) ≤ σr+1(Sπ) + c ε?n ln δ−1.

Moreover, the rate matches the minimax lower bound for the operator norm error when

learning finite rank Aπ, r ≥ 2,

E(Ĝ) ≥ c δq ε?n.
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Koopman spectra for time-reversal invariant processes

Example (Langevin Dynamics)

Let X = Rd and let β > 0. The (overdamped) Langevin equation driven by a potential

U : Rd → R is given by

dXt = −∇U(Xt)dt+
√

2β−1dWt,

where Wt is a Wiener process. The invariant measure of this process is the Boltzman

distribution π(dx) ∝ e−βU(x)dx, and the associated Koopman operator is self-adjoint.

• Koopman operator for time-reversal invariant processes is self-adjoint, i.e. A∗π = Aπ.

• If additionally we assume compactness of Aπ (e.g. if p(x, ·)� π, for all x ∈ X ), then

Aπ =
∑
i∈N µi fi ⊗ fi,

where (µi, fi)i∈N ⊆ R × L2
π(X ) are Koopman eigenpairs, i.e. Aπfi = µi fi. Moreover,

limi→∞ µi = 0 and {fi}i∈N form a complete orthonormal system of L2
π(X ).
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Estimation of Koopman spectra in self-adjoint case

• Let (λ̂i, ψ̂i)
r
i=1 be its eigen-pairs a rank r estimator Ĝ∈HS (H) of Aπ, i.e. Ĝψ̂i = λ̂i ψ̂i.

• To compare ψ̂i with the corresponding true Koopman eigenfunction fi, using Sπ , we

inject ψ̂i in L2
π(X ) to define the normalized estimated eigenfunction

f̂i = Sπψ̂i / ‖Sπψ̂i‖, i ∈ [r].

• Using the classical Davis-Kahan spectral perturbation result we get

|λ̂i − µi| ≤ ‖(λ̂iI −Aπ)−1‖−1 ≤ E(Ĝ) η(ψ̂i), and

‖f̂i − fi‖2 ≤
2|λ̂i − µi|

[gapi(Aπ)− |λ̂i − µi|]+
,

where gapi(Aπ)= minj 6=j |µj−µj |.

• Spuriousness of spectra can arise purely from the learning problem, i.e.

”well learned” operator (small error) but ”badly learned” spectra (eigenvalues far apart)
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• To compare ψ̂i with the corresponding true Koopman eigenfunction fi, using Sπ , we

inject ψ̂i in L2
π(X ) to define the normalized estimated eigenfunction

f̂i = Sπψ̂i / ‖Sπψ̂i‖, i ∈ [r].

• Using the classical Davis-Kahan spectral perturbation result we get

|λ̂i − µi| ≤ ‖(λ̂iI −Aπ)−1‖−1 ≤ E(Ĝ) η(ψ̂i), and
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Spectral Learning Bounds

Theorem (Spectral bounds for self-adjoint Koopman)

Let Aπ be a compact self-adjoint operator. Under the assumptions of the previous Theorem,

there exists a constant c > 0, depending only on H, such that for every δ ∈ (0, 1), for every

large enough n ≥ r and every i ∈ [r] with probability at least 1− δ in the i.i.d. draw of

(xi, yi)
n
i=1 from ρ

|λ̂i − µj(i)| ≤


2σr+1(AπSπ)
σr(AπSπ) + c ε?n ln δ−1 if Ĝ = ĜRRR

r,γ ,

2σr+1(Sπ)
[σr(AπSπ)−σαr+1(Sπ)]+

+ c ε?n ln δ−1 if Ĝ = ĜPCR
r,γ .

Moreover, |λ̂i − µj(i)| ≤ si(Ĝ) + +c ε?n ln δ−1, where the empirical bias is given by

si(Ĝ) :=


η̂i σr+1(Ĉ−1/2T̂ ), Ĝ = ĜRRR

r,γ ,

η̂i

√
σr+1(Ĉ), Ĝ = ĜPCR

r,γ .
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Experiments



Example: Choice of the kernel

e−5 e−4 e−3 e−2 e−1 e0

Good kernel

e−5 e−4 e−3 e−2 e−1 e0

Bad kernel

e−5 e−4 e−3 e−2 e−1 e0

Ugly kernel

Reduced Rank (RRR) Principal Components (PCR) a.k.a. EDMD

PCR vs. RRR in estimating slow dynamics of 1D Ornstein–Uhlenbeck process

Xt = e−1Xt−1 +
√

1− e−2 εt,

where {εt}t≥1 are independent standard Gaussians.

We use three different kernels over 50 independent trials. Vertical lines correspond to Koopman

eigenvalues. The good kernel is such that its H corresponds to the leading eigenspace of the

Koopman operator, while the other two use permuted eigenfunctions to distort the metric and

introduce slow (bad kernel) and fast (ugly kernel) spectral decay of the covariance.
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Example: Noisy Logistic Map

Let F (x) := 4x(1− x) over X = [0, 1] and consider the discrete dynamical system

xt+1 = (F (xt) + ξt) mod 1,

where ξt are i.i.d. with law Ω(dξ) ∝ cosN (πξ)dξ, N even

−0.5 0.0 0.5
0

2

4

6
Noise distribution Ω

0.0 0.5 1.0
0

1

2

3
Invariant distribution π

N = 20

Noiseless

0.0 0.5 1.0
−1

0

1

2

Eigenfunction for λ2

Real part

Imag. part

For this system we are able to evaluate the spectral decomposition of Aπ: rank(Aπ)=N+1

and the eigenvalues decay fast: λ1=1, λ2,3=−0.193± 0.191i, and |λ4,5| ≈ 0.027.
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Example: Noisy Logistic Map

Experimental setting: 104 training points, 500 test points, 100 repetitions

Estimator Training error Test error

|λ1 − λ̂1|/|λ1| |λ2,3 − λ̂2,3|/|λ2,3|

PCR 0.2± 0.003 0.18± 0.00051

9.6 · 10−5 ± 7.2 · 10−5 0.85± 0.03

RRR 0.13± 0.002 0.13 ± 0.00032

5.1 · 10−6 ± 3.8 · 10−6 0.16 ± 0.1

KRR 0.032 ± 0.00057 0.13 ± 0.00068

7.9 · 10−7 ± 5.7 · 10−7 0.48± 0.17

• Empirically we verify bounds!

• λ1 = 1 (corresponding to the

equilibrium mode) is well

approximated by all estimators

• RRR always outperforms PCR

and it best estimates the

non-trivial eigenvalues λ2,3
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Figure 1: Numerical verification of the uniform bound presented in Thm. 3 for the noisy Logistic map.
Left panel: the training and test risk for RRR are consistently than PCR. Right panel: the deviation
between training and test risk as a function of the number of training samples have ⇡ n�1/2 decay.

Along with the code to reproduce the experiments, at the url https://github.com/CSML-IIT-
UCL/kooplearn, we release a Python module implementing sklearn-compliant [44] estimators to
learn the Koopman operator.

Noisy Logistic Map. We study the noisy logistic map, a non-linear dynamical system defined by the
recursive relation xt+1 = (4xt(1�xt)+ ⇠t) mod 1 over the state space X = [0, 1]. Here, ⇠t is i.i.d.
additive trigonometric noise as defined in [42]. The probability distribution of trigonometric noise is
supported in [�0.5, 0.5] and is proportional to cosN (⇡⇠), N being an even integer. In this setting,
the true invariant distribution, transition kernel and Koopman eigenvalues are easily computed. In
Tab. 1 we compare the performance of KRR, PCR and RRR (see Sec. 4) trained with a Gaussian
kernel. We average over 100 different training datasets each containing 104 data points and evaluate
the test error on 500 unseen points. In Tab. 1 we show the approximation error for the three largest
eigenvalues of the Koopman operator, �1 = 1 and �2,3 = �0.193 ± 0.191i as well as training and
test errors. The following eigenvalues |�4,5| ⇡ 0.027 are an order of magnitude smaller than |�2,3|.
Both PCR and RRR have been trained with the rank constraint r = 3. The regularization parameter �
for KRR and RRR is the value � 2 [10�7, 1] minimizing the validation error. The RRR estimator
always outperforms PCR, and in the estimation of the non-trivial eigenvalues �2,3 (�1 corresponding
to the equilibrium mode is well approximated by every estimator) attains the best results. In Fig. 1
we report the results of a comparison between PCR and RRR performed under Ivanov regularization.
This experiment was designed to empirically test the uniform bounds presented in Sec. 5. Again,
RRR consistently outperforms the PCR estimator.

Table 1: Comparison of the estimators proposed in Section 4 on the noisy logistic map.

Estimator Training error Test error |�1 � �̂1| |�2,3 � �̂2,3|
PCR 0.2 ± 0.003 0.18 ± 0.00051 9.6 · 10�5 ± 7.2 · 10�5 0.23 ± 0.0071
RRR 0.13 ± 0.002 0.13 ± 0.00032 5.1 · 10�6 ± 3.8 · 10�6 0.044 ± 0.027
KRR 0.032 ± 0.00057 0.13 ± 0.00068 7.9 · 10�7 ± 5.7 · 10�7 0.13 ± 0.045

The molecule Alanine Dipeptide. We analyse a simulation of the small molecule Alanine dipeptide
reported in Ref. [62]. The dataset, here, is a time series of the Alanine dipeptide atomic positions.
The trajectory spans an interval of 250 ns and the number of features for each data point is 45. The
dynamics is Markovian and governed by the Langevin equation [25]. The system supports an invariant
distribution, known as the Boltzmann distribution, and the equations are time-reversal-invariant. The
latter implies that the true Koopman operator is self-adjoint and has real eigenvalues.

For Alanine dipeptide it is well known that the dihedral angles play a special role, and characterize
the state of the molecule. Broadly speaking, we can associate specific regions of the dihedral angles
space to metastable states, i.e. configurations of the molecule which are "stable" over an appreciable
span of time. To substantiate this claim we point to the left panel of Figure 2. From this plot it is
evident that the molecule spend a large amount of time around specific values of the angle  , and
transitions from one region to another are quite rare.

9
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Example: Noisy Logistic Map
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Example: Koopman Operator & Molecular Dynamics

Simulation of the molecule Alanine dipeptide

from the Computational Molecular Biology

Group, Freie Universität Berlin:

• dynamics governed by the Langevin

equation is Markovian

• exists an invariant measure called

Boltzmann distribution

• equations are time-reversal-invariant, so

Aπ = A∗π

The estimated evals λ1 = 0.9992, λ2 = 0.9177, λ3 = 0.4731, λ4 = −0.0042 and λ5 = −0.0252.
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Example: Koopman Operator & Molecular Dynamics

• In this example we show that minimizing the empirical spectral bias over a validation

dataset, is also a good criterion for Koopman model selection.

• We trained 19 RRR estimators each corresponding to a different kernel and then we

evaluated the forecasting RMSE over 5000 validation points from 2000 initial conditions

drawn from a test dataset.

• Forecasting RMSE shows how the

best model according to the

empirical spectral bias metric also

attains the best forecasting

performances by a large margin.

1 2 3 4 5

Forecast horizon [ns]

10−1

100

R
M

S
E

Model selection for Alanine Dipeptide

Best estimator
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Example: Koopman Operator with “Deep” Kernels

• In computer vision, kernels defined from neural-network feature maps outperform classical

ones

• We compare Linear, Gaussian and Convolutional Neural Network (CNN) kernels, the

latter being

kw(x, x′) := 〈φw(x), φw(x′)〉
where φw is the last layer of a pretrained CNN classifier. Training data size = 1000

Linear Kernel

Seed t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9

Gaussian Kernel

CNN Kernel

Conv2d(1,16; 5)→ ReLU→ MaxPool(2)→ Conv2d(16,32; 5)→ ReLU→ MaxPool(2)→ Dense(1568, 10)
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Deep Learning of a good RKHS



Deep Projection Networks

• What is a good RKHS?

dominant Koopman efuns captured, no kernel selection bias and no metric distorsion

PHAπPH ≈ Aπ, ‖[I − PH]AπSπ‖ 0 and η(ψ) = ‖ψ‖ / ‖C1/2ψ‖ 1

• The idea is to parameterize two feature vectors one for input and one for the output:

φw(x) := [φw,1(x), . . . , φw,`(x)] ∈ R` and φw′(y) := [φw′,1(y), . . . , φw′,`(y)] ∈ R`

and then, using covariance operators

CwX = Eφw(X)⊗ φw(X), Cww
′

XY = Eφw(X)⊗ φw′(Y ) and Cw
′

Y = Eφw′(Y )⊗ φw′(Y ),

maximize the regularized score

max
w,w′

‖Cww′XY ‖2HS

‖CwX‖‖Cw
′

Y ‖︸ ︷︷ ︸
≤‖PHwAπPHw′ ‖

2
HS

−γ
(
‖CwX − I‖2HS + ‖Cw′Y − I‖2HS

)
︸ ︷︷ ︸

reducing the metric distortion
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Challenges & open problems



Thank You!
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Trajectory data

• With notion of beta mixing coefficients:

βX (τ) = sup
B∈Σ⊗Σ

∣∣µ{1,1+τ} (B)− µ{1} × µ{1} (B)
∣∣

we prove that for B ∈ Σ[1:m]

∣∣∣µ[1:m] (B)− µm{1} (B)
∣∣∣ ≤ (m− 1)βX (1), and derive

• Lemma 1 Let X be strictly stationary with values in a normed space (X , ‖·‖), and

assume n = 2mτ for τ,m ∈ N. Moreover, let Z1, . . . , Zm be m independent copies of

Z1 =
∑τ
i=1Xi. Then for s > 0

P
{∥∥∥ n∑

i=1

Xi

∥∥∥ > s
}
≤ 2P

{∥∥∥ m∑
j=1

Zj

∥∥∥ > s

2

}
+ 2 (m− 1)βX (τ).

• We generalize Prop. 2 as

Proposition 3: Let δ > (m− 1)βX(τ − 1). With probability at least 1− δ in the draw

x1 ∼ π, xi ∼ p(xi−1, ·), i ∈ [2:n],

‖T̂ − T‖ ≤ 48

m
ln

4mτ

δ − (m− 1)βX (τ − 1)
+ 12

√
2 ‖C‖
m

ln
4mτ

δ − (m− 1)βX (τ − 1)
.
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